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Introduction

Floating structures can be prone to dynamic instabilities (also known as parametric excitations) that
can result in large motions even in the absence of direct external excitation, like that from waves,
in the unstable mode (e.g., Paulling and Rosenberg, 1959; Koo and Kim, 2004; Babarit et al., 2009;
Orszaghova et al., 2018b). In general, such motion instabilities are undesirable as they can degrade
design life and operational performance of offshore structures.

Theoretical investigations of instabilities rely on analysis of the well-known Mathieu equation.
Resulting stability diagrams (also known as Ince-Strutt diagrams) reveal bounded and unbounded
solution regions depending on the amplitude and frequency of the parametric excitation (see Fig. 1b).
Although such theoretical analysis may reveal the presence of instability, it cannot provide information
on the severity of the unstable motions. CFD models provide the most advanced numerical technique
to study the presence and magnitude of such instabilities as they can account for the relevant physical
processes, including viscous effects. However, due to their vast computational requirements, the
application of such models is limited, and they are only suitable to run a select number of simplified
sea states (e.g., monochromatic waves or design wave groups).
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Figure 1: Panel a: Diagram of the muti-moored CETO wave energy converter. Panel b: Stability diagram and test
conditions considered in this work.

In this paper, we attempt to predict the motion instabilities of a wave energy converter using
(a) the widely known and used Cummins’ equation model (Cummins, 1962), which couples linear
hydrodynamics to nonlinear mooring/power take-off forces, and (b) a non-hydrostatic wave-flow model
called SWASH (Simulating WAves till SHore). The SWASH model (Zijlema et al., 2011) provides
an efficient direct numerical implementation of the basic flow equations (akin to CFD). The model
has recently been extended to include dynamic coupling to the rigid body equations to account for
the interactions between waves and floating bodies (Rijnsdorp et al., 2018). When compared to
conventional CFD codes, the primary advantage of the non-hydrostatic models like SWASH is that
they can resolve the nonlinear wave dynamics and wave-structure interactions with a significantly
coarser grid resolution. As such, they allow for applications at the scale of a field site, as well as
for longer simulation durations that are essential to elucidate motion instabilities for realistic sea
states. In this work, we present an initial effort to compare predictions by the SWASH model with
the Cummins’ equation and observations from an experimental campaign on yaw instability in the
multi-moored CETO wave energy converter developed by Carnegie Clean Energy (Fig. 1a).

Experimental set-up

As part of an ongoing collaboration between Carnegie Clean Energy and the University of Western
Australia, motion instabilities of the CETO wave energy converter were investigated in the Ocean
Wave Basin at the University of Plymouth, UK. The CETO device is an axi-symmetric submerged



buoy (a truncated vertical cylinder), which is taut-moored (symmetrically) via three inclined tethers
(Fig. 1a). The mooring and the power take-off (PTO) systems are integrated, and power is absorbed
from the dynamic extensions and retractions of the tethers. Although hydrodynamic excitation in yaw
is absent for such a cylindrical axi-symmetric device, yaw instability may develop due to nonlinear
coupling between yaw and heave (in the PTO-mooring system).

Fig. 1b shows the Ince-Strutt stability diagram of the CETO device as given by the Mathieu
equation. In it, the horizontal axis � is related to the ratio of the natural yaw frequency (!n) and
the frequency of the parametric excitation (!); and the vertical axis � is related to the magnitude
of the parametric excitation. Note that in the CETO system studied here, � depends on the heave
motion amplitude as well as the PTO-mooring parameters (refer to Orszaghova et al., 2018a, for more
details). During the experimental campaign, various wave conditions were explored that spanned
both the stable and unstable regions in this stability diagram. In this work, we consider two pairs of
regular wave experiments. Each pair includes two tests with the same wave period T but different
wave heights H, thereby including both stable (for the smaller H) and unstable (for the larger H)
yaw motions.

Numerical methodology

The non-hydrostatic model SWASH (Zijlema et al., 2011) is a direct numerical implementation of
the three-dimensional Euler or Reynolds Averaged Navier Stokes (RANS) equations (when viscous
stresses are included) on a curvilinear terrain-following grid. In contrast to conventional CFD models,
which aspire to resolve complex details of the free surface (for example, using the level-set or VOF
method), non-hydrostatic models rely on the significant simplifying assumption that the free-surface
can be represented by a single valued function. This simplification, combined with the use of effi-
cient numerical schemes (e.g., Stelling and Zijlema, 2003), allows non-hydrostatic models to efficiently
capture nonlinear wave and flow dynamics at the scale of a realistic coastal region.

Recently, efforts have been made to extend this modelling approach to account for interactions
between waves and floating bodies (e.g., Rijnsdorp and Zijlema, 2016; Ma et al., 2016). In particular,
Rijnsdorp et al. (2018) extended the SWASH model to capture wave-induced response of a submerged
wave-energy converter. An iterative approach was implemented to account for the dynamic coupling
between the flow and the motions of the floating body (accounting for the full geometric nonlinearity
of the mooring system), see Fig. 2 for a sketch of the grid schematization and the governing equations.
To preserve the efficiency of the numerical approach, the kinematic boundary conditions (kbc) were
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Rigid body equations
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Figure 2: Sketch of the terrain-following grid schematization, the staggered variable arrangement, and the governing
equations for the flow and the body motions. In the flow equations, t is time, xi are the Cartesian coordinates, ui are the
velocity components, gi (= 〈0; 0; g〉) is the gravitational acceleration, and q is the non-hydrostatic pressure. In the rigid
body equations, m and I are the mass and moment of inertia matrices, Xi and Θi represent the body translations and
rotations, and Fi and Mi represent the external forces acting on the body (including the hydrodynamic and mooring line
forces). The color of the arrows indicate whether the velocity is computed using the momentum equation (black arrow),
or imposed through the kinematic boundary condition.




