ALGEBRAS WITH TRANSITIVE AUTOMORPHISM GROUPS

BY

L. G. SWEET AND J. A. MACDOUGALL*

Abstract. Let \(A \) be a finite dimensional algebra (not necessarily associative) over a field, whose automorphism group acts transitively. It is shown that \(K = GF(2) \) and \(A \) is a Kostrikin algebra. The automorphism group is determined to be a semi-direct product of two cyclic groups. The number of such algebras is also calculated.

All algebras are assumed to be finite dimensional but not necessarily associative. If \(A \) is an algebra over a field \(K \) let \(Aut(A) \) denote the group of algebra automorphisms of \(A \). We say that \(A \) has a transitive automorphism group if \(Aut(A) \) acts transitively on the non-zero points of \(A \). An algebra \(A \) is said to be non-trivial if \(\text{dim} \ A > 1 \) and \(A^2 \neq 0 \).

We show that if \(A \) is a non-trivial algebra with a transitive automorphism group then \(K = GF(2) \), \(A \) is a Kostrikin algebra and \(Aut(A) \) is the semi-direct product of two finite cyclic groups.

Theorem 1: If \(A \) is a non-trivial algebra with transitive automorphism group over a field \(K \) then \(K = GF(2) \).

Proof: First assume that \(K \) is infinite. Let \(a, b \in A \setminus \{0\} \). Then there exists an \(\alpha \in Aut(A) \) such that \(\alpha(a) = b \) and this implies that \(\alpha L_a \alpha^{-1} = L_b \) where \(L_a \) and \(L_b \) indicate left multiplication by \(a \) and \(b \) respectively in \(A \). That is, \(L_a \) and \(L_b \) are similar. But in particular, we may allow \(b = \lambda a \) for any nonzero \(\lambda \in K \). Now comparing the characteristic polynomials of \(L_a \) and \(L_b = \lambda L_a \) it is easy to show that \(L_a \) is nilpotent. Similarly \(R_a \) is nilpotent and so \(A \) is a special nil algebra as defined in [7]. It follows from Theorem 2 of the above paper that \(A^2 = 0 \).

Now assume that \(K \) is finite. Then \(Aut(A) \) certainly acts transitively on the one dimensional subspaces of \(A \) and so the results of Shult [5] imply that \(K = GF(2) \).

Definition: Let \(K = GF(2^n) \) and \(\mu \) be any fixed element in \(K \). Let \(\circ : K \times K \to K \) be the map defined by \(x \circ y = \mu(xy)^{2^n-1} \). Let \(A(n, \mu) \) denote the algebra over \(GF(2) \) obtained from \(K \) by replacing the usual multiplication in \(K \) by the map \(\circ \).

We call \(A(n, \mu) \) a Kostrikin Algebra since these algebras were investigated by Kostrikin in [4].

* This research was supported by NSERC grant A5232.

Received by the editors December 24, 1984 and, in revised form, March 27, 1985.

AMS 1980 Subject Classification: primary 17A99, secondary 20B25.

Key Words and Phrases. Transitive groups, automorphism groups, Kostrikin algebras, homogeneous algebras, automorphic algebra.

Theorem 2: If A is a non-trivial algebra with transitive automorphism group then A is a Kostrikin Algebra.

Proof: By Theorem 1, $K = GF(2)$. Let $n = \dim A$. If n is odd then the result was proved by Sweet [8] and finally Ivanov [3] proved that the result was true for any finite n.

Theorem 3: Let A be a non-trivial algebra of dimension n with transitive automorphism group. Then $A = A(n, \mu)$ for some $\mu \in GF(2^n)$ and $\text{Aut}(A) = C_r \rtimes C_s$ where $r = 2^n - 1$ and $s = n/\gcd(n, m)$ where m is the smallest positive integer such that $\sigma^m(\mu) = \mu$ and σ is the squaring map on the field $GF(2^n)$.

Proof: It follows from Theorem 2 that $A = A(n, \mu)$ for some $\mu \in GF(2^n)$. We denote multiplication in the field by juxtaposition and multiplication in the algebra by \circ. Let ν be any generator of the multiplicative group $GF^*(2^n)$ and T_ν be the map defined as $T_\nu(x) = \nu x$. Let σ be the map defined as $\sigma(x) = x^2$ and $\alpha = \sigma^m$, where m is the smallest positive integer such that $\sigma^m(\mu) = \mu$.

Now it is easy to check that $T_\nu \in \text{Aut}(A(n, \mu))$. Let $\beta \in \text{Aut}(A(n, \mu))$ and let $c = \beta(1)$. Also let $\tau = T_\nu^{-1}\beta$. Now $\tau(1) = 1$ and $\tau \in \text{Aut}(A(n, \mu))$ which implies that

$$\tau(a \circ b) = \tau(\mu(ab)^{2^{n-1}}) = \mu(\tau(a) \tau(b))^{2^{n-1}}$$

Let $S: A(n, \mu) \to A(n, \mu)$ be the mapping defined as $S(x) = x \circ x$. Then $S = T_\mu$ and $S \in \text{Aut}(A(n, \mu))$. In fact, it is easy to show that S belongs to the centre of $\text{Aut}(A(n, \mu))$ which implies that (1) can be written as

$$\tau(\mu(ab)^{2^{n-1}}) = \mu(\tau(ab)^{2^{n-1}}) = \mu(\tau(a) \tau(b))^{2^{n-1}}$$

If we let $b = 1$ we conclude that $\tau \circ^1 = \sigma^{-1} \tau$ and (2) implies that

$$\tau(a^{-1}(ab)) = \sigma^{-1}(\tau(ab)) = \sigma^{-1}(\tau(a) \tau(b))$$

Hence $\tau(ab) = \tau(a) \tau(b)$ and τ is a field automorphism of $GF(2^n)$. It is well known that $\tau = \sigma^t$ for some integer t. In fact t must be a multiple of m since $\tau(\mu) = \mu$. Now $\beta = T_\nu \sigma^t$ and $\alpha \in \text{Aut}(A(n, \mu))$ and so

$$\text{Aut}(A(n, \mu)) = \langle T_\nu, \alpha \rangle$$

where T_ν is of order $2^n - 1$ and α is of order $s = n/\gcd(n, m)$. Finally observe that $\alpha^{-1} T_\nu \alpha = T_\nu^{2^{m-1}}$ and so

$$\text{Aut}(A(n, \mu)) = \langle T_\nu, \alpha | T_\nu^s = \alpha^s = 1, \alpha^{-1} T_\nu \alpha = T_\nu^{2^{m-1}} \rangle.$$

Clearly $\langle T_\nu \rangle$ is a normal subgroup of $\text{Aut}(A(n, \mu))$ and it is easy to show that $\langle T_\nu \rangle \cap \langle \alpha \rangle = 1$ and so

$$\text{Aut}(A(n, \mu)) \cong C_r \rtimes C_s$$

where $r = 2^n - 1$ and $s = n/\gcd(n, m)$.

Theorem 4: The number of non-isomorphic Kostrikin algebras of dimension n is given by

$$N_n = \frac{1}{n} \sum_{d|n} \phi(d) 2^{n/d}$$

Proof: Theorem 4 of [2] states that the algebras $A(n, \mu)$ and $A(n, \lambda)$ are isomorphic if and only if there is an automorphism of $GF(2^n)$ mapping λ to μ. Since the automorphism group of $GF(2^n)$ is generated by σ, the squaring map, $A(n, \mu)$ and $A(n, \lambda)$ will be non-isomorphic if and only if λ and μ belong to different orbits of $GF(2^n)$. But, $GF(2^n)$ partitions into the sets of roots of all the irreducibles over $GF(2)$ of degrees dividing n (see [6]). Further, the roots of an irreducible of degree d are $\{\alpha, \alpha^2, \ldots, \alpha^{2^{n-1}}\}$, that is, an orbit of $GF(2^n)$. Thus the number of Kostrikin algebras of dimension n is equal to the number of irreducible polynomials over $GF(2)$ of a degree which divides n, and this number is given in [1] as the N_n above.

It should be noted that the trivial algebra (in which $\alpha^2 = 0$) is just the Kostrikin algebra with $\mu = 0$. Thus the number N_n in theorem 4 includes the trivial algebra.

References

Department of Mathematics & Computer Science
University of Prince Edward Island
Charlottetown, Prince Edward Island
C1A 4P3