DocServer

A DECOMPOSITION THEOREM FOR HOMOGENEOUS ALGEBRAS

MacDougall, James A. and Sweet, L. G. (2002) A DECOMPOSITION THEOREM FOR HOMOGENEOUS ALGEBRAS. Journal of the Australian Mathematical Society Series A, 72 . pp. 47-56.

[img]
Preview
PDF - Accepted Version
Download (171Kb) | Preview

    Abstract

    An algebra $A$ is {\em homogeneous} if the automorphism group of $A$ acts transitively on the one dimensional subspaces of $A$. Suppose $A$ is a homogeneous algebra over an infinite field $k$. Let $L_a$ denote left multiplication by any nonzero element $a \in A$. Several results are proved concerning the structure of $A$ in terms of $L_a$. In particular, it is shown that $A$ decomposes as the direct sum $A = ker L_a \oplus Im L_a$. These results are then successfully applied to the problem of classifying the infinite homogeneous algebras of small dimension.

    Item Type: Article
    Subjects: 00-xx General
    Faculty: UNSPECIFIED
    Depositing User: Stephanie
    Date Deposited: 18 Nov 2010 12:06
    Last Modified: 18 Nov 2010 12:06
    URI: https://docserver.carma.newcastle.edu.au/id/eprint/822

    Actions (login required)

    View Item