MULTI-VARIABLE SINC INTEGRALS AND VOLUMES OF POLYHEDRA

DAVID BORWEIN, JONATHAN M. BORWEIN AND BERNARD A. MARES JR.

ABSTRACT. We investigate multi-variable integrals of products of sinc functions and show how they may be interpreted as volumes of symmetric convex polyhedra. We then derive an explicit formula for computing such sinc integrals and so equivalently volumes of polyhedra.

1. Introduction.

Stimulated by our recent prior work with one dimensional sinc integrals we study a class of multi-variable sinc integrals. In Sections 2 through 5 we obtain results concerning the relationship between such a multi-variable sinc integral $\sigma(S)$ (defined in Section 2 below) and the volume of an associated symmetric convex polyhedron. Section 6 is devoted to establishing a partial fraction decomposition to be used in Section 7. In Section 7, we derive (Theorem 4) an explicit algebraic (determinant) formula for the computation of $\sigma(S)$. This formula entirely generalizes that given in [1], wherein more motivation and references may also be found.

2. Sinc and polyhedron spaces.

As is quite usual we set

$$\text{sinc}(t) := \frac{\sin t}{t}.$$

Given $x := (x_1, x_2, \ldots, x_m)$ and $y = (y_1, y_2, \ldots, y_m)$ in \mathbb{R}^m, we use the notation $xy := x_1y_1 + x_2y_2 + \cdots + x_my_m$ to denote the dot product.

We first define the classes of sinc integrals and of polyhedra we will study and identify them with certain spaces of matrices. We define the sinc space $S_{m,n}$ to be the set of $m \times (m+n)$ matrices $S = (s_1 \ s_2 \ \cdots \ s_{m+n})$ of column vectors in \mathbb{R}^m such that

$$\int_{\mathbb{R}^m} \prod_{k=1}^{m+n} \text{sinc}(s_k y) \, dy < \infty,$$

\[<\] 1

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

1991 Mathematics Subject Classification. 42A99; 42A38.

Keywords and phrases. multi-variable sinc integrals, Fourier transforms, convolution, Parseval’s theorem, volumes of polyhedra.

Typeset by \textsc{AmS-\TeX}
and a function $\sigma : S^{m,n} \to \mathbb{R}$ by

$$\sigma(S) := \int_{\mathbb{R}^n} \prod_{k=1}^{m+n} \text{sinc}(s_k y) dy.$$

Note that $S^{m,n} \subset \mathbb{R}^{n \times (m+n)}$ and that (by Lemma 2 below) when $n \geq m \geq 1$ a sufficient condition for $S \in S^{m,n}$ is that two completely disjoint $m \times m$ submatrices of S be non-singular. In fact, a little more work shows that the condition is necessary and sufficient for the integrand to be Lebesgue integrable. Hence a typical non-absolute example is

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \text{sinc}^3(x - y)\text{sinc}(x + y) dy \, dx.$$

Note that when $n \geq m = 1$, the condition is satisfied as soon as all entries are non-zero.

We correspondingly define the polyhedron space $\mathcal{P}^{m,n}$ to be $\mathbb{R}^{n \times (m+n)}$. Thus an element $P \in \mathcal{P}^{m,n}$ is a matrix $(p_1 \quad p_2 \quad \cdots \quad p_{m+n})$ of column vectors in \mathbb{R}^n. Next, we define a function $\nu : \mathcal{P}^{m,n} \to \mathbb{R}$ by

$$\nu(P) := \text{Vol} \{ x \in \mathbb{R}^n : |p_k x| \leq 1 \text{ for } k = 1, 2, \ldots, m + n \}.$$

The integral $\sigma(S)$ will be our primary object of study. Observe that $\nu(P)$ is the volume of a convex polyhedron with the symmetry $x \to -x$. The polyhedron has dimension n and represents the region between $m + n$ pairs of parallel n-planes. Note that any such symmetric convex polyhedron may be represented as an element of $\mathcal{P}^{m,n}$ and vice-versa. But to evaluate all symmetric volumes we would need to consider improper integrals and we choose not to do so.

3. Two duality theorems.

Of the two theorems stated in this section, the first is elementary while the proof of the second requires some results about Fourier transforms.

Theorem 1. Let M be a non-singular $m \times m$ matrix and $S \in S^{m,n}$. Then

$$\sigma(S) = |\det(M)| \sigma(MS).$$

Similarly, if N is a non-singular $n \times n$ matrix and $P \in \mathcal{P}^{m,n}$, then

$$\nu(P) = |\det(N)| \nu(NP).$$

Proof. Both of these statements follow from the change of basis theorem for Lebesgue integrals [2, p. 391]. \qed
Theorem 2. Suppose that \(n \geq m \) and that the matrix \(A := (a_1 \ a_2 \ \cdots \ a_n) \in \mathbb{R}^{n \times n} \) has at least one non-singular \(m \times m \) submatrix. Then

\[
\sigma \left(I^m | A \right) = \frac{\pi^m}{2^n} \nu \left(I^m | A^T \right) \leq \pi^m
\]

with equality if and only if \(\max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{i,j}| \leq 1 \) where \(a_{i,j} \) is the \(j \)-th component of the vector \(a_i \).

Here and subsequently \(I^r \) denotes the \(r \times r \) identity matrix, \(A^T \) the transpose of \(A \), and \((C|D) \) the appropriate concatenation of matrices \(C \) and \(D \). We defer the proof of Theorem 2 until the end of Section 4. Observe that Theorem 2 shows also that the integral is positive. As an immediate consequence of Theorems 1 and 2 we have more generally:

Corollary 1. If \(n \geq m \), \(A \) is a non-singular \(m \times m \) matrix, and \(B \) is any \(m \times n \) matrix having \(m \) of its columns linearly independent, then

\[
\sigma(A|B) = \frac{\sigma(I^m | A^{-1} B)}{|\text{det}(A)|} = \frac{\pi^m}{2^n} \nu \left(I^m | (A^{-1} B)^T \right) \frac{|\text{det}(A)|}{|\text{det}(A)|}.
\]

Further, if \(n \geq m \), \(C \) is a non-singular \(n \times n \) matrix, and \(D \) is any \(n \times m \) matrix such that \(C^{-1} D \) has \(m \) linearly independent rows, then

\[
\nu(C|D) = \frac{\nu(I^m | C^{-1} D)}{|\text{det}(C)|} = \frac{2^n}{\pi^m} \sigma(I^m | (C^{-1} D)^T) \frac{|\text{det}(C)|}{|\text{det}(C)|}.
\]

4. Further definitions and basic Fourier results.

For \(a \in \mathbb{R}^m \), define the Borel measure \(\delta_a \) to be the linear Lebesgue measure restricted to the set \(\iota_a := \{ x \in \mathbb{R}^m : x = ta, -1 \leq t \leq 1 \} \), i.e., for any Borel set \(B \subset \mathbb{R}^m \), \(\delta_a(B) = \delta_a(B \cap \iota_a) \), and for any locally \(L_1 \)-integrable complex Borel measurable function \(f \) on \(\mathbb{R}^m \),

\[
\int_{\mathbb{R}^m} f(x) \delta_a(dx) = \int_{-1}^1 f(ta) \, dt.
\]

Hence

\[
\int_{\mathbb{R}^m} e^{i \omega y} \delta_a(dx) = \int_{-1}^1 e^{i \omega t y} \, dt = 2 \text{sinc}(ay).
\]

Further, for \(b \in \mathbb{R}^m \), and the convolution measure \(\lambda := \delta_a * \delta_b \), we have, by definition and application of Fubini’s theorem [2, p. 352], that

\[
\int_{\mathbb{R}^m} f(x) \lambda(dx) = \int_{\mathbb{R}^m} \delta_a(dx) \int_{\mathbb{R}^m} f(x + w) \delta_b(dw),
\]
so that
\[
\int_{\mathbb{R}^m} e^{ixy} \lambda(dx) = \int_{\mathbb{R}^m} \delta_{a}(dx) \int_{\mathbb{R}^m} e^{i\psi(x+w)} \delta_{b}(dw)
= \int_{\mathbb{R}^m} e^{ixy} \delta_{a}(dx) \int_{\mathbb{R}^m} e^{iuy} \delta_{b}(dw) = 4\text{sinc}(ay)\text{sinc}(by),
\]
and in general, if \(a_1, a_2, \ldots, a_n \in \mathbb{R}^m\) and
\[
\mu := \delta_{a_1} \ast \delta_{a_2} \ast \cdots \ast \delta_{a_n},
\]
then
\[
(1) \quad \int_{\mathbb{R}^m} e^{ixy} \mu(dx) = 2^n \prod_{k=1}^{n} \text{sinc}(a_k y).
\]
Also, for any Borel set \(B\) in \(\mathbb{R}^m\) we have that
\[
\int_{B} \lambda(dx) = \int_{\mathbb{R}^m} \chi_B(x) \lambda(dx) = \int_{\mathbb{R}^m} \delta_{a}(dx) \int_{\mathbb{R}^m} \chi_B(x + w) \delta_{b}(dw)
= \int_{\mathbb{R}^m} \delta_{a}(dx) \int_{-1}^{1} \chi_B(x + t_2 b) \, dt_2 = \int_{-1}^{1} dt_1 \int_{-1}^{1} \chi_B(t_1 a + t_2 b) \, dt_2
= \int_{H^2} \chi_B(t_1 a + t_2 b) \, dt
\]
and so if \(a_1, a_2, \ldots, a_n \in \mathbb{R}^m\), \(t = (t_1, t_2, \ldots, t_n) \in \mathbb{R}^n\) and \(\mu = \delta_{a_1} \ast \delta_{a_2} \ast \cdots \ast \delta_{a_n}\), as above then
\[
(2) \quad \int_{B} \mu(dx) = \int_{H^n} \chi_B(t_1 a_1 + t_2 a_2 + \cdots + t_n a_n) \, dt,
\]
and so, for the hypercube \(H^m := [-1, 1]^m\) in place of \(B\), we have that
\[
(3) \quad \int_{H^m} \mu(dx) = \int_{H^n} \chi_{H^m}(t_1 a_1 + t_2 a_2 + \cdots + t_n a_n) \, dt = \nu(I^n | A^T),
\]
in the notation of Section 1 with \(A\) the \(m \times n\) matrix \((a_1 \ a_2 \ \cdots \ a_n)\).

Lemma 1. Suppose that \(n \geq m\) and \(a_1, a_2, \ldots, a_n \in \mathbb{R}^m\) with the \(m \times m\) matrix \(A := (a_1 \cdots a_m)\) non-singular. Let \(\mu := \delta_{a_1} \ast \delta_{a_2} \ast \cdots \ast \delta_{a_n}\). Then, for any Borel set \(B \subset H^m\),

\[
(i) \quad \mu_m(B) = \int_{B} \chi_{H^m} \left(\frac{(A^T)^{-1} x}{\text{det} \, A}\right) dx,
(ii) \quad \mu_n(B) = \int_{B} \phi_n(x) \, dx, \text{ where } \phi_n \text{ is a bounded real-valued non-negative Borel measurable function supported on a bounded set in } \mathbb{R}^m.
\]
Proof. Part (i) follows from (3) with \(m = n \) by the change of basis theorem for integrals. For part (ii), observe that the result is true with \(\phi_m(x) := \frac{\chi_{Hm}((AT)^{-1}x)}{|\det A|} \). Now define

\[
\phi_{m+1}(x) := \int_{\mathbb{R}^m} \phi_m(x - y) \delta_{m+1}(dy) = \int_{-1}^{1} \phi_m(x - ta_{m+1}) dt
\]

which is evidently non-negative, bounded and of bounded support. Further, for any Borel set \(B \) in \(\mathbb{R}^m \),

\[
\int_B \phi_{m+1}(x) dx = \int_{\mathbb{R}^m} \chi_B(x) \phi_{m+1}(x) dx = \int_{\mathbb{R}^m} \delta_{m+1}(dx) \int_{\mathbb{R}^m} \chi_B(x + w) \phi_m(w) dw
\]

\[
= \int_{\mathbb{R}^m} \delta_{m+1}(dx) \int_{\mathbb{R}^m} \chi_B(x + w) \mu_m(dw) = \int_{\mathbb{R}^m} \chi_B(x) \mu_{m+1}(dx)
\]

and this establishes (ii) when \(n = m + 1 \).

Continuing in this way we find that (ii) holds in generality. \(\square \)

Lemma 2. Suppose that \(a_1, a_2, \ldots, a_n \in \mathbb{R}^m \) with \(n \geq m \), and that the \(m \times m \) matrix \(A := (a_1 \ a_2 \ \cdots \ a_m) \) is non-singular. Then

\[
\int_{\mathbb{R}^m} \prod_{k=1}^n \text{sinc}^2(a_k y) dy < \infty.
\]

Proof. By the change of basis theorem for integrals, we get that

\[
\int_{\mathbb{R}^m} \prod_{k=1}^n \text{sinc}^2(a_k y) dy \leq \int_{\mathbb{R}^m} \prod_{k=1}^m \text{sinc}^2(a_k y) dy = \int_{\mathbb{R}^m} \frac{1}{|\det A|} \prod_{k=1}^m \text{sinc}^2(x_k) dx < \infty.
\]

\(\square \)

5. Fourier transforms and sinc integrals in \(\mathbb{R}^m \).

We first state some standard results about the Fourier transform (FT) which may be found in texts such as [2, p. 358-362].

The FT of a given function \(f \in L_2(\mathbb{R}^m) \) is the function \(\hat{f} \) that is the \(L_2 \)-limit as \(\rho \to \infty \) of

\[
c_{\rho}(x) := \frac{1}{(\sqrt{2\pi})^m} \int_{[-\rho, \rho]^m} f(y) e^{-ixy} dy, \text{ i.e. } \int_{\mathbb{R}^m} |c_{\rho}(x) - \hat{f}(x)|^2 dx \to 0 \text{ as } \rho \to \infty.
\]

This function \(\hat{f} \) exists, is unique apart from sets of zero Lebesgue measure, and \(\hat{f} \in L_2(\mathbb{R}^m) \).

Further, if \(f_1, f_2 \) are FTs of \(f_1, f_2 \in L_2(\mathbb{R}^m) \) and \(f_1, f_1 \) are real, then we have the following version of Parseval's theorem:

\[
\int_{\mathbb{R}^m} f_1(x) f_2(x) dx = \int_{\mathbb{R}^m} f_1(x) f_2(x) dx.
\]
Lemma 3. Suppose that $a_1, a_2, \ldots, a_n \in \mathbb{R}^m$ with $n \geq m$ and the $m \times m$ matrix $A := (a_1 \cdots a_m)$ non-singular. Let

$$f_1(y) := \prod_{k=1}^{m} \operatorname{sinc}(y_k), \quad f_2(y) := \prod_{k=1}^{n} \operatorname{sinc}(a_k y).$$

Then, for $\mu := \delta_{a_1} \ast \delta_{a_2} \ast \cdots \ast \delta_{a_n}$ and $H^m := [-1, 1]^m$,

$$\sigma (I^m | A) = \int_{\mathbb{R}^n} f_1(y) f_2(y) \, dy = \frac{\pi^n}{2^n} \int_{\mathbb{S}^m} \mu(dy).$$

Proof. By Lemma 1 and (1) we have that

$$\frac{1}{(\sqrt{2\pi})^m} \int_{\mathbb{R}^m} e^{ixy} \phi(x) \, dx = \frac{2^n}{(\sqrt{2\pi})^m} f_2(y) \text{ where } \phi \in L_1(\mathbb{R}^m) \cap L_2(\mathbb{R}^m),$$

i.e.,

$$\frac{2^n}{(\sqrt{2\pi})^m} f_2(y) = \hat{\phi}(-y) \text{ for } y \in \mathbb{R}^m.$$

It follows, by [2, p.362, Exercise 13(w)], that $\hat{f}_2 = 2^{-n}(\sqrt{2\pi})^m \hat{\phi}$, and likewise we get that $\hat{f}_1 = 2^{-m}(\sqrt{2\pi})^n \hat{\psi}$ where $\psi(y) = \chi_{H^m}(y).$ Since $f_1, f_2 \in L_2(\mathbb{R}^m)$ by Lemma 2 or [2, p.362, Exercise 13(w)], we can apply Parseval’s theorem to get that

$$\int_{\mathbb{R}^m} f_1(y) f_2(y) \, dy = \frac{(2\pi)^m}{2^{m+n}} \int_{\mathbb{R}^m} \psi(y) \phi(y) \, dy = \frac{\pi^n}{2^n} \int_{\mathbb{S}^m} \mu(dy).$$

Proof of Theorem 2. Combining (3) and Lemma 3 we obtain that

$$\sigma (I^m | A) = \frac{\pi^n}{2^n} \nu \left(I^n | A^T\right).$$

The rest of the theorem follows readily from the definition of $\nu \left(I^n | A^T\right).$ \qed

6. A partial fraction decomposition.

Before evaluating the sinc integrals, we need to introduce some multilinear algebra so as to derive an appropriate partial fractional decomposition. Our precise goal in this section is to prove Theorem 3 so as to obtain Corollary 3 below. Theorem 3 is a multilinear analogue of Cramer’s rule that computes a change of basis for tensors. It reduces to the traditional version of Cramer’s rule in the case $n = 1.$

Let I denote the set of $(m+n-1)$ integer sequences $\kappa = \{\kappa_1, \kappa_2, \ldots, \kappa_m\}$ satisfying $\kappa_1 = 1 < \kappa_2 < \ldots < \kappa_m \leq m + n$, and let I' denote the set of integer sequences $\kappa' = \{\kappa'_1, \kappa'_2, \ldots, \kappa'_n\}$ satisfying
$1 < \kappa_1' < \kappa_2' < \ldots < \kappa_n' \leq m + n$. Let κ^c denote the complement of κ in $\{1, 2, \ldots, m + n\}$. Note that the complement operator c is a bijection between I and I'.

For $t_1, t_2, \ldots, t_n \in \mathbb{R}^m$, $S = (s_1 \ s_2 \ \ldots \ s_{m+n}) \in \mathbb{R}^{m \times (m+n)}$ and $y \in \mathbb{R}^m$, let

$$
\beta_n(t_1, t_2, \ldots, t_n) := \prod_{j=1}^{n} \frac{\det(t_j \ s_{\kappa_j})}{\det(s_{\kappa_j})} \text{ for } \kappa \in I,
$$

$$
B(t_1, t_2, \ldots, t_n) := \left\{ \sum_{\kappa \in I} \beta_n(t_1, t_2, \ldots, t_n) \left(\prod_{j=1}^{n} (s_{\kappa_j} y) \right) \right\} - \prod_{j=1}^{n} (t_j y).
$$

Observe that B is a symmetric n-linear form.

Lemma 3. Let k' be a fixed element of I', and let the matrix $S = (s_1 \ s_2 \ \ldots \ s_{m+n}) \in \mathbb{R}^{m \times (m+n)}$ have every $m \times m$ submatrix non-singular. Then, for all $\kappa \in I$,

$$
\beta_{\kappa} := \beta_{\kappa} (s_{\kappa_1'}, s_{\kappa_2'}, \ldots, s_{\kappa_n'}) = \prod_{j=1}^{n} \frac{\det(s_{\kappa_j})}{\det(s_{\kappa_j})} = \delta_{k', \kappa}.
$$

Proof. Clearly, $\beta_{\kappa} = 0$ if $\kappa_j' = \kappa_j$ for some $j \in \{1, 2, \ldots, m\}$ and $i \in \{2, \ldots, m\}$, since this will cause s_{κ_j} to be repeated in some numerator determinant. More precisely, $\beta_{\kappa} \neq 0$ if and only if $\kappa' = \kappa^c$. This is because κ^c is the only n-element subset of $\{1, 2, \ldots, m + n\}$ which is disjoint from κ. Consequently, no vectors in the numerator determinants are repeated, and since each m-element subset of S is linearly independent by hypothesis, the numerator determinant is non-zero. Moreover, when $\kappa' = \kappa^c$, the numerator determinant and the denominator determinant are equal, and so $\beta_{\kappa} = 1$. This establishes that $\beta_{\kappa} = \delta_{k', \kappa^c}$. \hfill \Box

Corollary 2. For all $k' \in I'$, $B(s_{\kappa_1'}, s_{\kappa_2'}, \ldots, s_{\kappa_n'}) = 0$.

Proof. By Lemma 3,

$$
B(s_{\kappa_1'}, s_{\kappa_2'}, \ldots, s_{\kappa_n'}) = \left\{ \sum_{\kappa \in I} \delta_{k', \kappa} \left(\prod_{j=1}^{n} (s_{\kappa_j} y) \right) \right\} - \prod_{j=1}^{n} (s_{\kappa_j} y) = \prod_{j=1}^{n} (s_{\kappa_j} y) - \prod_{j=1}^{n} (s_{\kappa_j} y) = 0.
$$

\hfill \Box

Theorem 3. Let the matrix $S = (s_1 \ s_2 \ \ldots \ s_{m+n}) \in \mathbb{R}^{m \times (m+n)}$ have every $m \times m$ submatrix non-singular. Then, for any n vectors $t_1, t_2, \ldots, t_n \in \mathbb{R}^m$ and any $y \in \mathbb{R}^m$,

$$
\prod_{j=1}^{n} (t_j y) = \sum_{\kappa \in I} \left(\prod_{j=1}^{n} \frac{\det(t_j \ s_{\kappa_j})}{\det(s_{\kappa_j})} \right) \left(\prod_{j=1}^{n} (s_{\kappa_j} y) \right).
$$
Proof. It suffices to prove that $B(t_1, t_2, \ldots, t_n) = 0$. We do this by expanding each of the n variables sequentially in terms of column vectors of S as follows:

$$B(t_1, t_2, \ldots, t_n) = B \left(\sum_{i_1=2}^{m+1} c_{1,i_1} s_{i_1}, t_2, \ldots, t_n \right) = \sum_{i_1=2}^{m+1} c_{1,i_1} B(s_{i_1}, t_2, \ldots, t_n)$$

$$= \sum_{i_1=2}^{m+1} c_{1,i_1} B \left(\sum_{i_2=2}^{m+2} c_{2,i_2} s_{i_2}, t_3, \ldots, t_n \right)$$

$$= \sum_{i_2=2}^{m+2} \sum_{i_1=2}^{m+1} c_{1,i_1} c_{2,i_2} B(s_{i_1}, s_{i_2}, t_3, \ldots, t_n)$$

$$= \sum_{i_2=2}^{m+2} \sum_{i_1=2}^{m+1} \left(\prod_{j=1}^{n} c_{j,i_j} \right) B(s_{i_1}, s_{i_2}, \ldots, s_{i_n}) = 0,$$

since each $B(s_{i_1}, s_{i_2}, \ldots, s_{i_n})$ vanishes. This is a consequence of the symmetry of B, combined with Corollary 2, because the vectors $s_{i_1}, s_{i_2}, \ldots, s_{i_n}$ are all distinct and are a permutation of $s_{\kappa'_1}, s_{\kappa'_2}, \ldots, s_{\kappa'_n}$ for some $\kappa' \in I$. \hfill \Box

We may now specialize this result to obtain the partial fraction decomposition needed in the next section.

Corollary 3. If every $m \times m$ submatrix of the matrix $S = (s_1 \ s_2 \ \ldots \ s_{m+n}) \in \mathbb{R}^{m \times (m+n)}$ is non-singular, then, for every $y \in \mathbb{R}^m$,

$$\prod_{i=1}^{m+n} (s_i y)^{-1} = (s_1 y)^{-n} \sum_{\kappa \in I} \alpha_\kappa \prod_{j=1}^{m} (s_{\kappa_j} y)^{-1},$$

where

$$\alpha_\kappa := \frac{\det(s_{\kappa_1} \ s_{\kappa_2} \ \ldots \ s_{\kappa_m})^n}{\prod_{j=1}^{m} \det(s_{\kappa_j} \ s_{\kappa_2} \ \ldots \ s_{\kappa_m})}.$$
Proof. Taking \(t_1 = t_2 = \cdots = t_n = s_1 \) in Theorem 3, we get the identity

\[
(s_1 y)^n = \sum_{\kappa \in I} \left(\prod_{j=1}^{n} \det(s_{\kappa_1} s_{\kappa_2} \cdots s_{\kappa_m}) \right) \prod_{j=1}^{n} (s_{\kappa_j} y).
\]

Divide both sides by \((s_1 y)^{n+1} \prod_{j=1}^{n} (s_j y) \) to produce the desired identity. \(\square \)

7. Evaluating the sinc integrals.

In all that follows let \(g_{r,s} \) denote the characteristic function

\[
g_{r,s} := \chi([-r,-s) \cup [s,r])
\]

for \(0 \leq s < r \leq \infty \).

Lemma 4. For \(a_1, a_2, \ldots, a_m \in \mathbb{R}, \) \(0 < \eta < \rho < \infty, \) \(0 < \nu < \rho < \infty \) and \(n \geq 0, \)

\[
\int_{\mathbb{R}^m} \frac{1}{u_1^n} \frac{\cos \left(a_1 u_1 + a_2 u_2 + \cdots + a_m u_m - \frac{\pi}{2}(m + n) \right)}{u_1 u_2 \cdots u_m} \times g_{\rho,\eta}(u_1) g_{\rho,\nu}(u_2) \cdots g_{\rho,\nu}(u_m) \, du_1 \, du_2 \cdots du_m
\]

\[
= \left(\int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(a_1 u - \frac{\pi}{2}(1 + n) \right) g_{\rho,\eta}(u) \, du \right) \left(\prod_{j=2}^{m} \int_{\mathbb{R}} g_{\rho,\nu}(u) \frac{\sin(a_j u)}{u} \, du \right).
\]

Proof. Observe that all the integrals are absolutely convergent, and that the result is trivially true for \(m = 1 \). Further, for \(m \geq 2, \)

\[
\int_{\mathbb{R}^m} \frac{1}{u_1^n} \frac{\cos \left(a_1 u_1 + a_2 u_2 + \cdots + a_m u_m - \frac{\pi}{2}(m + n) \right)}{u_1 u_2 \cdots u_m} \times g_{\rho,\eta}(u_1) g_{\rho,\nu}(u_2) \cdots g_{\rho,\nu}(u_m) \, du_1 \, du_2 \cdots du_m
\]

\[
= \int_{\mathbb{R}^{m-1}} \frac{1}{u_1^n} \frac{\sin \left(a_m u_m + a_1 u_1 + a_2 u_2 + \cdots + a_{m-1} u_{m-1} - \frac{\pi}{2}(m - 1 + n) \right)}{u_1 u_2 \cdots u_{m-1}} \times g_{\rho,\eta}(u_1) g_{\rho,\nu}(u_2) \cdots g_{\rho,\nu}(u_m) \, du_1 \, du_2 \cdots du_{m-1}
\]

\[
\times \int_{\mathbb{R}} \frac{\sin \left(a_m u_m + a_1 u_1 + a_2 u_2 + \cdots + a_{m-1} u_{m-1} - \frac{\pi}{2}(m - 1 + n) \right)}{u_m} g_{\rho,\nu}(u_m) \, du_m
\]
\[
= \int_{\mathbb{R}^{m-1}} \frac{1}{u_1^n} \cos \left(a_1 u_1 + a_2 u_2 + \cdots + a_{m-1} u_{m-1} - \frac{\pi}{2} (m - 1 + n) \right) \\
\times g_{\rho,\eta}(u_1) g_{\rho,\nu}(u_2) \cdots g_{\rho,\nu}(u_{m-1}) \, du_1 \, du_2 \cdots du_{m-1} \\
\times \int_{\mathbb{R}} \frac{\sin(a_m u_m)}{u_m} g_{\rho,\nu}(u_m) \, du_m,
\]

since \(\cos(a_m u_m) g_{\rho,\nu}(u_m) / u_m \) is an odd function of \(u_m \). Continuing in this way we obtain the desired result. \(\square \)

For our central result of the section we need some further notation:

Notation. Given a matrix \((s_1 \ s_2 \ \cdots \ s_{n+m}) \in \mathbb{R}^{m \times (m+n)}\) with all its \(m \times m\) submatrices non-singular, we denote \(\Gamma := \{-1, 1\}^{[2, \ldots, m+n]} \), and for each \(\gamma \in \Gamma \), we define
\[
s_\gamma := s_1 + \sum_{j=2}^{m+n} \gamma_j s_j, \quad e_\gamma := \prod_{j=2}^{m+n} \gamma_j.
\]

For each \(\kappa \in I \), denote the matrix \((s_{\kappa_1} \ s_{\kappa_2} \ \cdots \ s_{\kappa_m})\) by \(S_\kappa \) and the \(j \)-th component of \(S_\kappa^{-1} s_\gamma \) by \(s_{\kappa,\gamma;j} \). We then have that, for any \(y \in \mathbb{R}^m \),
\[
s_\gamma y = \sum_{j=1}^{m} s_{\kappa,\gamma;j} (s_{\kappa;j} y).
\]
and
\[
\alpha_\kappa := \det(s_{\kappa_1} \ s_{\kappa_2} \ \cdots \ s_{\kappa_m})^n \prod_{j=1}^{m} \det(s_{\kappa_1} \ s_{\kappa_2} \ \cdots \ s_{\kappa_m})^n,
\]
is as in Corollary 3.

Our aim now is to prove the following surprisingly explicit closed form evaluation in which
\[
\text{sgn}(t) := \begin{cases}
1 & \text{if } t > 0 \\
0 & \text{if } t = 0 \\
-1 & \text{if } t < 0.
\end{cases}
\]

When \(m = 1 \) this reduces to the evaluation obtained in [1].

Theorem 4. Fix notation as immediately above, and suppose that \(n \geq m \geq 1 \). Suppose that \(S = (s_1 \ s_2 \ \cdots \ s_{n+m}) \) is in \(\mathbb{R}^{m \times (m+n)} \), and that every \(m \times m \) submatrix of \(S \) is non-singular. Then
\[
\sigma(S) := \int_{\mathbb{R}^m} \prod_{j=1}^{m+n} \text{sinc}(s_j y) \, dy_1 \, dy_2 \cdots dy_m
\]
\[
= \frac{1}{2^{m-1} n!} \left(\frac{\pi}{2} \right)^m \sum_{\kappa \in I} \frac{\alpha_\kappa}{\det S_\kappa} \sum_{\gamma \in \Gamma} e_\gamma (s_{\kappa,\gamma;j})^n \prod_{j=1}^{m} \text{sgn}(s_{\kappa,\gamma;j}).
\]
Proof. Observe that, by Lemma 2, the integral is absolutely convergent, so that \(S \in S^{m,n} \). By Corollary 3, we have that

\[
\sigma(S) = \int_{\mathbb{R}^m} \sum_{\kappa \in I} \alpha_\kappa \left(\prod_{i=1}^{m+n} \sin(s_i y) \right) (s_1 y)^{-n} \left(\prod_{j=1}^{m} (s_{\kappa_j} y)^{-1} \right) dy_1 dy_2 \cdots dy_m.
\]

We don’t deal directly with this integral, but with its better behaved approximant

\[
\sigma_{\eta,\nu}(S) := \int_{\mathbb{R}^m} \sum_{\kappa \in I} \alpha_\kappa \left(\prod_{i=1}^{m+n} \sin(s_i y) \right) (s_1 y)^{-n-1} g_{\rho_\kappa,\eta}(s_1 y) \times \left(\prod_{j=2}^{m} (s_{\kappa_j} y)^{-1} g_{\rho_\kappa,\nu}(s_{\kappa_j} y) \right) dy_1 dy_2 \cdots dy_m,
\]

where \(0 < \eta < \rho_\kappa < \infty \), \(0 \leq \nu < \rho_\kappa < \infty \) and \(g_{\rho,\sigma} \) is the characteristic function defined immediately above Lemma 4. Let

\[
f_{\kappa,\eta,\nu}(y) := (s_1 y)^{-n-1} g_{\rho_\kappa,\eta}(s_1 y) \left(\prod_{i=1}^{m+n} \sin(s_i y) \right) \left(\prod_{j=2}^{m} (s_{\kappa_j} y)^{-1} g_{\rho_\kappa,\nu}(s_{\kappa_j} y) \right).
\]

Since \(|f_{\kappa,\eta,\nu}(y)| \leq |f_{\kappa,\eta,0}(y)| \), while the latter has bounded support, it follows that

\[
\int_{\mathbb{R}^m} |f_{\kappa,\eta,\nu}(y)| dy < \infty \text{ for } \nu \geq 0,
\]

so that

\[
\sigma_{\eta,\nu}(S) = \int_{\mathbb{R}^m} \sum_{\kappa \in I} \alpha_\kappa f_{\kappa,\eta,\nu}(y) dy = \sum_{\kappa \in I} \alpha_\kappa \int_{\mathbb{R}^m} f_{\kappa,\eta,\nu}(y) dy,
\]

and, by dominated convergence,

\[
\sigma_{\eta,0}(S) = \lim_{\nu \to 0^+} \sigma_{\eta,\nu}(S).
\]

By [1, Thm. 2(i)], we have that

\[
\prod_{j=1}^{m+n} \sin(s_j y) = 2^{1-m-n} \sum_{\gamma \in \Gamma} e_\gamma \cos \left(s_\gamma y - \frac{\pi}{2}(m + n) \right),
\]

and hence that

\[
\int_{\mathbb{R}^m} f_{\kappa,\eta,\nu}(y) dy = 2^{1-m-n} \sum_{\gamma \in \Gamma} e_\gamma \int_{\mathbb{R}^m} (s_1 y)^{-n-1} g_{\rho_\kappa,\eta}(s_1 y) \cos \left(s_\gamma y - \frac{\pi}{2}(m + n) \right) \times \left(\prod_{j=2}^{m} (s_{\kappa_j} y)^{-1} g_{\rho_\kappa,\nu}(s_{\kappa_j} y) \right) dy_1 dy_2 \cdots dy_m.
\]
Make the change of variables \(u_j := s_{\Gamma_j} y \). Observing that \(s_{\Gamma} y = s_{\Gamma_1} u_1 + s_{\Gamma_2} u_2 + \cdots + s_{\Gamma_m} u_m \), we obtain

\[
\int_{\mathbb{R}^m} f_{\kappa, \eta, \nu}(y) dy
= \frac{2^{1-m-n}}{|\text{det } S_\kappa|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \int_{\mathbb{R}^m} (u_1)^{-n-1} g_{\rho, \eta}(u_1)
\times \cos \left(s_{\Gamma_1} u_1 + s_{\Gamma_2} u_2 + \cdots + s_{\Gamma_m} u_m - \frac{\pi}{2} (m + n) \right)
\times \left(\prod_{j=2}^m (u_j)^{-1} g_{\rho, \nu}(u_j) \right) du_1 du_2 \cdots du_m
\]

by Lemma 4. Letting \(\nu \to 0^+ \), we see that

\[
\int_{\mathbb{R}^m} f_{\kappa, \eta, 0}(y) dy = \frac{2^{1-m-n}}{|\text{det } S_\kappa|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \left(\int_{\mathbb{R}^n} \frac{1}{u^{n+1}} \cos \left(s_{\Gamma_1} u - \frac{\pi}{2} (1 + n) \right) g_{\rho, \eta}(u) du \right)
\times \left(\prod_{j=2}^m \int_{\mathbb{R}} g_{\rho, 0}(u) \frac{\sin(s_{\Gamma_j} u)}{u} du \right).
\]

Denote the \(m \)-dimensional hypercube \([-\rho, \rho]^m \) by \(U_\rho \). We fix a reference member \(\lambda \in I \), and a corresponding parameter \(\rho_\lambda \), which we will later increase to infinity. Define

\[
Y_{\rho_\lambda} := (S_\lambda^T)^{-1} U_{\rho_\lambda}.
\]

Then, by what was proved above, we have that

\[
\int_{Y_{\rho_\lambda}} f_{\lambda, \eta, \nu}(y) dy
= \frac{2^{1-m-n}}{|\text{det } S_\lambda|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \int_{U_{\rho_\lambda}} (u_1)^{-n-1} g_{\infty, \eta}(u_1)
\times \cos \left(s_{\lambda, \gamma_1} u_1 + s_{\lambda, \gamma_2} u_2 + \cdots + s_{\lambda, \gamma_m} u_m - \frac{\pi}{2} (m + n) \right)
\times \left(\prod_{j=2}^m (u_j)^{-1} g_{\infty, \nu}(u_j) \right) du_1 du_2 \cdots du_m.
\]
Now for each $\kappa \in I$, let
\[V_{\kappa, \lambda} := S^T_{\kappa} Y_{\mu}, \quad M_{\kappa, \lambda} := S^T_{\kappa} (S^T_{\kappa})^{-1}, \quad c_{\kappa, \lambda} := \|M_{\kappa, \lambda}\|_{\infty}. \]
Observe that $M_{\lambda, \kappa} = M^{-1}_{\kappa, \lambda}$ and that the supremum norm $c_{\kappa, \lambda} \geq 1$. Define
\[\rho_{\kappa} := c_{\kappa, \lambda} \rho_{\lambda}, \quad \bar{\rho}_{\kappa} := \frac{\rho_{\lambda}}{c_{\lambda, \kappa}}. \]
It is straightforward to show that
\[U_{\bar{\rho}_{\kappa}} \subset V_{\kappa, \lambda} \subset U_{\rho_{\kappa}}, \]
and hence that
\[Y_{\rho_{\kappa}} := (S^T_{\kappa})^{-1} U_{\rho_{\kappa}} \supset Y_{\lambda}. \]
[Here and elsewhere we use the fact that each of the finitely many matrices $\{S_{\kappa} : \kappa \in I\}$ is invertible.]
Observe next that
\[\int_{U_{\rho_{\kappa}}} \int_{U_{\rho_{\kappa}}} (u_1)^{-n-1} g_{\infty, \eta}(u_1) \left| \cos \left(s_{\kappa, \gamma;1} u_1 + s_{\kappa, \gamma;2} u_2 + \cdots + s_{\kappa, \gamma;m} u_m - \frac{\pi}{2} (m + n) \right) \right| \times \left(\prod_{j=2}^{m} (u_j)^{-1} g_{\infty, \nu}(u_j) \right) \, du_1 \, du_2 \cdots \, du_m \]
\[\leq \int_{\bar{\rho}_{\kappa}}^{\infty} \frac{du_1}{u_1^{n+1}} \prod_{j=2}^{m} \int_{\bar{\rho}_{\kappa}}^{\rho_{\kappa}} \frac{du_j}{u_j} = c_{\lambda, \kappa} \ln \left(c_{\kappa, \lambda} c_{\lambda, \kappa} \right) \frac{n \rho_{\kappa}^{m-1}}{n \rho_{\lambda}}. \]
It follows that
\[\int_{Y_{\rho_{\kappa}}} f_{\kappa, \eta, \nu}(y) \, dy = \frac{2^{1-n-m}}{|\det S_{\kappa}|} \sum_{\gamma \in I} \int_{V_{\kappa, \lambda}} (u_1)^{-n-1} g_{\infty, \eta}(u_1) \]
\[\times \cos \left(s_{\kappa, \gamma;1} u_1 + s_{\kappa, \gamma;2} u_2 + \cdots + s_{\kappa, \gamma;m} u_m - \frac{\pi}{2} (m + n) \right) \times \left(\prod_{j=2}^{m} (u_j)^{-1} g_{\infty, \nu}(u_j) \right) \, du_1 \, du_2 \cdots \, du_m. \]
\[\begin{align*}
&= \frac{2^{1-m-n}}{|\det S_\kappa|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \int_{U_{s, \kappa}} (u_1)^{-n-1} g_{\infty, \eta}(u_1) \\
&\quad \times \cos \left(s_{\kappa, \gamma_1} u_1 + s_{\kappa, \gamma_2} u_2 + \cdots + s_{\kappa, \gamma_m} u_m - \frac{\pi}{2} (m + n) \right) \\
&\quad \times \left(\prod_{j=2}^{m} (u_j)^{-1} g_{\infty, \nu}(u_j) \right) \, du_1 \, du_2 \cdots \, du_m + O(\rho_\lambda^{-n}) \\
&= \frac{2^{1-m-n}}{|\det S_\kappa|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \left(\int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma_1} u - \frac{\pi}{2} (1 + n) \right) g_{\rho_\lambda, \eta}(u) \, du \right) \\
&\quad \times \left(\prod_{j=2}^{m} \int_{\mathbb{R}} g_{\rho_\lambda, \nu}(u) \frac{\sin(s_{\kappa, \gamma_j} u)}{u} \, du \right) + O(\rho_\lambda^{-n}),
\end{align*}\]

and therefore, on letting \(\nu \to 0^+ \), we get

\[\begin{align*}
\int_{Y_{s, \lambda}} f_{\kappa, \eta, 0}(y) \, dy \\
&= \frac{2^{1-m-n}}{|\det S_\kappa|} \sum_{\gamma \in \Gamma} \epsilon_\gamma \left(\int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma_1} u - \frac{\pi}{2} (1 + n) \right) g_{\rho_\lambda, \eta}(u) \, du \right) \\
&\quad \times \left(\prod_{j=2}^{m} \int_{\mathbb{R}} g_{\rho_\lambda, 0}(u) \frac{\sin(s_{\kappa, \gamma_j} u)}{u} \, du \right) + O(\rho_\lambda^{-n}).
\end{align*}\]

Consequently

\[\begin{align*}
(5) \quad \int_{Y_{s, \lambda}} \sum_{\kappa \in \mathcal{I}_{\kappa}} \alpha_\kappa f_{\kappa, \eta, 0}(y) \, dy \\
&= \int_{Y_{s, \lambda}} \sum_{\kappa \in \mathcal{I}_{\kappa}} \alpha_\kappa (s_1 y)^{-n-1} g_{\infty, \eta}(s_1 y) \left(\prod_{i=1}^{m+n} \sin(s_i y) \right) \left(\prod_{j=2}^{m} (s_{\kappa, \gamma_j} y)^{-1} \right) \, dy \\
&= \int_{Y_{s, \lambda}} g_{\infty, \eta}(s_1 y) \prod_{i=1}^{m+n} \sin(s_i y) \, dy \to \int_{\mathbb{R}}^m g_{\infty, \eta}(s_1 y) \prod_{i=1}^{m+n} \sin(s_i y) \, dy
\end{align*}\]

as \(\rho_\lambda \to \infty \).

But we also have that
\[
\int_{Y_{\lambda}} \sum_{\kappa \in \mathcal{I}} \alpha_{\kappa} f_{\kappa, \eta, 0}(y) \, dy \\
= \sum_{\kappa \in \mathcal{I}} \alpha_{\kappa} \frac{2^{1-m-n}}{\det S_{\kappa}} \sum_{\gamma \in \Gamma} \epsilon_{\gamma} \left(\int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma; 1} u - \frac{\pi}{2} (1 + n) \right) g_{\rho_{\kappa}, \eta}(u) \, du \right) \\
\times \left(\prod_{j=2}^{m} \int_{\mathbb{R}} g_{\rho_{\kappa}, 0}(u) \frac{\sin(s_{\kappa, \gamma; j} u)}{u} \, du \right) + O(\rho_{\lambda}^{-n}) \\
\to \frac{1}{2^n} \left(\frac{\pi}{2} \right)^{m-1} \sum_{\kappa \in \mathcal{I}} \frac{\alpha_{\kappa}}{\det S_{\kappa}} \sum_{\gamma \in \Gamma} \epsilon_{\gamma} \left(\prod_{j=2}^{m} \sgn(s_{\kappa, \gamma; j}) \right) \\
\times \int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma; 1} u - \frac{\pi}{2} (1 + n) \right) g_{\infty, \eta}(u) \, du.
\]

as \(\rho_{\lambda} \to \infty \).

It follows from (5) and (6) that

\[
\int_{\mathbb{R}} g_{\infty, \eta}(s_1 y) \prod_{r=1}^{m+n} \text{sinc}(s_ry) \, dy \\
= \frac{1}{2^n} \left(\frac{\pi}{2} \right)^{m-1} \sum_{\kappa \in \mathcal{I}} \frac{\alpha_{\kappa}}{\det S_{\kappa}} \sum_{\gamma \in \Gamma} \epsilon_{\gamma} \left(\prod_{j=2}^{m} \sgn(s_{\kappa, \gamma; j}) \right) \\
\times \int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma; 1} u - \frac{\pi}{2} (1 + n) \right) g_{\infty, \eta}(u) \, du.
\]

By one-dimensional partial integration, it is now easy to establish that

\[
C_{\kappa, \gamma}(\eta) := \int_{\mathbb{R}} \frac{1}{u^{n+1}} \cos \left(s_{\kappa, \gamma; 1} u - \frac{\pi}{2} (1 + n) \right) g_{\infty, \eta}(u) \, du \\
= \frac{1}{n!} \sum_{r=1}^{n} (r-1)! \frac{\phi_{\kappa, \gamma}^{(n-r)}(\eta)}{\eta^r} + \frac{2(s_{\kappa, \gamma; 1})^n}{n!} \int_{\eta}^{\infty} \frac{\sin(s_{\kappa, \gamma; 1} u)}{u} \, du,
\]

where

\[
\phi_{\kappa, \gamma}(\eta) := \cos \left(s_{\kappa, \gamma; 1} \eta - \frac{\pi}{2} (1 + n) \right) + (-1)^{n+1} \cos \left(s_{\kappa, \gamma; 1} \eta + \frac{\pi}{2} (1 + n) \right) \\
= \sin \left(s_{\kappa, \gamma; 1} \eta - \frac{\pi}{2} (1 + n) \right) + (-1)^n \sin \left(s_{\kappa, \gamma; 1} \eta + \frac{\pi}{2} n \right),
\]

whence

\[
\phi_{\kappa, \gamma}^{(n-r)}(\eta) = (s_{\kappa, \gamma; 1})^{n-r} \left\{ \sin \left(s_{\kappa, \gamma; 1} \eta - \frac{\pi}{2} r \right) + (-1)^r \sin \left(s_{\kappa, \gamma; 1} \eta + \frac{\pi}{2} r \right) \right\}
\]
\[\begin{aligned} &\begin{cases} 2(s_{\kappa,\gamma;1})^{m-r}(-1)^{r/2}\sin(s_{\kappa,\gamma;1}\eta) \text{ if } r \text{ is even} \\
2(s_{\kappa,\gamma;1})^{m-r}(-1)^{(1+r)/2}\cos(s_{\kappa,\gamma;1}\eta) \text{ if } r \text{ is odd}. \end{cases} \end{aligned} \]

It follows from (7), by dominated convergence of the left-hand integral, that

\[\lim_{\eta \to 0^+} \frac{1}{2^m} \frac{\pi}{2} \sum_{\kappa \in I} \alpha_{\kappa} \sum_{\gamma \in \Gamma} e_{\gamma} \left(\prod_{j=2}^{m} \text{sgn}(s_{\kappa,\gamma;j}) \right) C_{\kappa,\gamma}(\eta) = \int_{\mathbb{R}} \prod_{i=1}^{m+n} \text{sinc}(s_{i,\gamma;j}) \, dy = \sigma(S), \]

and hence that

\[(8) \quad \sigma(S) - \frac{1}{2^{m-1}n!} \frac{\pi}{2} \sum_{\kappa \in I} \alpha_{\kappa} \sum_{\gamma \in \Gamma} e_{\gamma} (s_{\kappa,\gamma;1})^m \prod_{j=1}^{m} \text{sgn}(s_{\kappa,\gamma;j}) = \lim_{\eta \to 0^+} F(\eta), \]

where

\[F(\eta) := \frac{1}{2^{n-1}n!} \frac{\pi}{2} \sum_{\kappa \in I} \alpha_{\kappa} \sum_{\gamma \in \Gamma} e_{\gamma} \left(\prod_{j=2}^{m} \text{sgn}(s_{\kappa,\gamma;j}) \right) \sum_{r=1}^{n} (r-1)! \frac{\phi_{\kappa,\gamma}^{(n-r)}(\eta)}{\eta^r}. \]

It follows from (8) that the meromorphic function \(F(\eta) \) can have no pole at the origin and so must in fact be entire provided \(F(0) := \lim_{\eta \to 0} F(\eta) \).

To complete the proof of Theorem 4, it remains only to show that \(F(0) = 0 \). Evidently we can write

\[F(\eta) = \frac{1}{\eta^n} \sum_{j=n}^{\infty} a_j \eta^j, \]

where the power series is convergent for all \(\eta \in \mathbb{C} \). Now

\[F(0) = a_n = \frac{1}{n!} \lim_{\eta \to 0} \left(\frac{d}{d\eta} \right)^n \eta^n F(\eta), \]

and, by Leibniz’s rule [2, p. 378],

\[\left(\frac{d}{d\eta} \right)^n \eta^n F(\eta) = \sum_{\gamma \in \Gamma, \kappa \in I} \omega_{\kappa,\gamma} \sum_{r=0}^{n-1} (n-r-1)! \sum_{j=0}^{r} \binom{n}{j} \phi_{\kappa,\gamma}^{(r+n-j)}(\eta) \eta^{r-j} \]

\[= \sum_{\gamma \in \Gamma, \kappa \in I} \omega_{\kappa,\gamma} \sum_{r=0}^{n-1} (n-r-1)! \binom{n}{r} \phi_{\kappa,\gamma}^{(r)}(\eta) + O(\eta) \]

\[\to 0 \text{ as } \eta \to 0, \]
since
\[\phi^{(n)}_{\kappa, \gamma} (\eta) = 2 (s_{\kappa, \gamma; 1})^n \sin (s_{\kappa, \gamma; 1} \eta). \]

We have thus shown that the limit in (8) is zero, and this completes the proof. \(\square \)

The quantities in Theorem 4 can all be expressed as determinants. For example by application of
Cramer’s rule
\[s_{\kappa, \gamma; 1} = \frac{\det \left(s_\gamma \quad s_{s_2} \quad \cdots \quad s_{s_m} \right)}{\det S_k}, \]
and the sgn term is similarly expressible.

We note that in Mathematica or Maple, it is possible via Theorem 4, to compute integrals/volumes
with \(m = 5 \) and \(n = 6 \), for example, quite rapidly.

Example. Let \(V \) denote the volume of \(\{ x \in \mathbb{R}^6 : |p_ix| \leq 1, i = 1 ... 11 \} \), where \(p_i \) is the \(i \)-th column
of the matrix
\[P = \begin{pmatrix}
10 & 0 & 0 & 0 & 0 & 0 & 9 & 10 & -1 & -3 & 7 \\
0 & 10 & 0 & 0 & 0 & 0 & -2 & -1 & -8 & 2 & -6 \\
0 & 0 & 10 & 0 & 0 & 0 & -9 & 7 & -5 & 5 & 1 \\
0 & 0 & 0 & 10 & 0 & 0 & 5 & -2 & -9 & -8 & -9 \\
0 & 0 & 0 & 0 & 10 & 0 & -10 & -2 & -3 & 6 & -4 \\
0 & 0 & 0 & 0 & 0 & 10 & -8 & 9 & 2 & 7 & -10
\end{pmatrix}. \]

By definition, \(V = \nu(P) \). By Theorem 2 and Corollary 1,
\[\nu(P) = 10^{-6} \nu \left(\frac{P}{10} \right) = 10^{-6} \frac{2^6}{\pi^3} \left(\frac{S}{10} \right) = 10^{-1} \frac{2^6}{\pi^3} \nu(S), \]
where
\[S = \begin{pmatrix}
10 & 0 & 0 & 0 & 0 & 9 & -2 & -9 & 5 & -10 & -8 \\
0 & 10 & 0 & 0 & 0 & 10 & -1 & 7 & 2 & -2 & 9 \\
0 & 0 & 10 & 0 & 0 & -1 & -8 & 2 & -5 & -9 & 3 \\
0 & 0 & 0 & 10 & 0 & -3 & 2 & 5 & 6 & -8 & 7 \\
0 & 0 & 0 & 0 & 10 & 7 & -6 & 1 & -9 & -4 & -10
\end{pmatrix}. \]

Thus
\[\nu(P) = \frac{32}{5 \pi^5} \int_{\mathbb{R}^5} \prod_{i=1}^{11} \text{sinc}(s_i y) dy, \]
where \(s_i \) is the \(i \)-th column of \(S \).
Performing the calculation from Theorem 4 for $\sigma(S)$ on a work station, we determine that $\nu(P)$ equals

$$17835533329899671896629034429151640987432075715436721335976340904268309549761079$$

$$3235382168544782203873128335100530028579170164112371381820826358461393954862567727$$
divided by

$$12717980376085286833702250854279611126990889183337607935819035761877628303248492254$$

$$370119892081041370216815396933750542094345724793216749989572681490327595008000000$$

which is approximately $1.402388807465640006609336515301763 \times 10^{-5} \ldots$ \(\square\)

Remark. Implicitly above we have used the evaluation

$$\int_0^\infty \frac{\sin y}{y} dy = \frac{\pi}{2}.$$

There are several well-known proofs [1]. It also follows on taking the limit, via Binet’s mean value theorem [2, p. 328], of the absolutely convergent integral

$$\int_0^\infty \frac{\sin y}{y^{1+\varepsilon}} dy = \frac{\pi \sec(\frac{\pi}{2} \varepsilon)}{2 \Gamma(1+\varepsilon)}.$$

It seems worth recording the following proof.

Proof. Maple happily evaluates the second integral to a form which simplifies to that we have given. A conventional proof follows by using the Γ-function to write

$$\int_0^\infty \frac{\sin y}{y^{1+\varepsilon}} dy = \frac{1}{\Gamma(\varepsilon+1)} \int_0^\infty dx \int_0^\infty \sin(x) \exp(-xt)t^\varepsilon dt.$$

One now interchanges the variables and evaluates the inner integral to $t^\varepsilon/(t^2+1)$. The outer integral now evaluates precisely to the claimed form. \(\square\)

Acknowledgements.

We should like to thank Greg Fee and David Bradley for their assistance during the course of this research.

References

Version of: February 9, 2001
mvsinc.tex

DAVID BORWEIN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WESTERN ONTARIO
LONDON, ONTARIO, CANADA N6A 5B7
E-MAIL: DBORWEIN@JULIAN.UWO.CA

JONATHAN M. BORWEIN
Centre for Experimental and Constructive Mathematics
DEPARTMENT OF MATHEMATICS AND STATISTICS
SIMON FRASER UNIVERSITY
BURNABY, B.C., CANADA V5A 1S6
E-MAIL: JMBORWEIN@CECM.SFU.CA

BERNARD A. MARES JR.
DEPARTMENT OF MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, RI 02912 USA
E-MAIL: BJRMARES@BROWN.EDU