A chain rule for essentially strictly differentiable Lipschitz functions

Jonathan M. Borwein*
CECM, Department of Mathematics and Statistics,
Simon Fraser University,
Burnaby, BC V5A 1S6, Canada jborwein@cecm.sfu.ca

Warren B. Moors†
Department of Mathematics,
The University of Auckland,
Private Bag 92019, Auckland, New Zealand
moors@math.auckland.ac.nz

January 16, 1996

Abstract
In this paper we introduce a new class of real-valued locally Lipschitz functions, (that are similar in nature and definition to Valadier’s same functions) which we call arc-wise essentially smooth, and we show that if \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is arc-wise essentially smooth on \(\mathbb{R}^n \) and each function \(f_j : \mathbb{R}^m \rightarrow \mathbb{R}, 1 \leq j \leq n \) is strictly differentiable almost everywhere in \(\mathbb{R}^m \), then \(g \circ f \) is strictly differentiable almost everywhere in \(\mathbb{R}^m \), where \(f \equiv (f_1, f_2, \ldots, f_n) \). We also show that all the semi-smooth and pseudo-regular functions are arc-wise essentially smooth. Thus, we provide a large and robust lattice algebra of Lipschitz functions whose generalized derivatives are well-behaved.

Keywords: Lipschitz functions, Chain rule, Haar-null sets, Differentiability, Essentially strictly differentiable AMS (1991) subject classification: Primary: 49J520; 46N10 Secondary: 58C20.

*Research supported by NSERC and the Shrum Endowment at Simon Fraser University.
†Research supported by a New Zealand Science and Technology Post Doctoral Fellowship
1 Introduction.

In this paper we show that those Lipschitz functions which are strictly differentiable almost everywhere, possess extremely strong closure properties. Essentially strictly differentiable functions were studied in detail in [3]. In particular, it was shown therein that all such functions possess very well-behaved Clarke generalized gradients.

We begin by recalling some preliminary definitions regarding the Clarke subdifferential mapping, [6]. A real-valued function f defined on a non-empty open subset A of a Banach space X is locally Lipschitz on A, if for each $x_0 \in A$ there exists a $K > 0$ and a $\delta > 0$ such that

$$|f(x) - f(y)| \leq K||x - y|| \quad \text{for all} \quad x, y \in B(x_0, \delta)$$

For functions in this class, it is often instructive to consider the following three directional derivatives:

(i) The upper Dini derivative at $x \in A$, in the direction y, is given by,

$$f^+(x; y) := \limsup_{\lambda \to 0^+} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

(ii) The lower Dini derivative at $x \in A$, in the direction y, is given by,

$$f^-(x; y) := \liminf_{\lambda \to 0^+} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

(iii) The Clarke generalised directional derivative at $x \in A$, in the direction y, is given by,

$$f^0(x; y) := \limsup_{\lambda \to 0^+} \frac{f(z + \lambda y) - f(z)}{\lambda}$$

It is immediate from these three definitions that for each $x \in A$ and each $y \in X$,

$$f^-(x; y) \leq f^+(x; y) \leq f^0(x; y)$$

Let us now examine some notions of differentiability that are associated with locally Lipschitz functions. We say that a real-valued locally Lipschitz function f is differentiable at x, in the direction y, if

$$f'(x; y) := \lim_{\lambda \to 0} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

exists
We say that f is Gateaux differentiable at x, if

$$
\nabla f(x)(y) \equiv \lim_{\lambda \to 0^+} \frac{f(x + \lambda y) - f(x)}{\lambda}
$$

exists for each $y \in X$ and $\nabla f(x)$ is a continuous linear functional on X. In this paper we will also be interested in two slightly stronger notions of differentiability. A locally Lipschitz function f is said to be strictly differentiable at x, in the direction y, if

$$
\lim_{\lambda \to 0^+} \frac{f(z + \lambda y) - f(z)}{\lambda}
$$

exists and we say that f is strictly differentiable at x, if f is strictly differentiable at x, in every direction $y \in X$. Let us recall that a function f is strictly differentiable at x, in the direction y if, and only if,

$$
f^1(x; y) = f'(x; y) = -f^1(x; -y)
$$

In addition to the various notions of differentiability we will need the notion of a ‘null’ set. We say that a subset N of a separable Banach space X is universally measurable if it belongs to the m-completion of the Borel subsets, $\mathcal{B}(X)$, for each finite Borel measure m on $\mathcal{B}(X)$. A universally measurable subset N of X is called a Haar-null set if there exists a probability measure P on $\mathcal{B}(X)$, (which extends canonically to the universally measurable sets on X) such that $P(N + x) = 0$ for all $x \in X$. The Haar-null sets are closed under translation and countable unions, [5]. It follows therefore, that if N is a Haar-null set then $X \setminus N$ is dense in X. In finite dimensions, the Haar-null sets coincide with the universally measurable Lebesgue null sets. We will say that a property P holds almost everywhere if $\{x \in X : P(x) \text{ is not true}\}$ is contained in a Haar-null set. A further important class of sets that we will need to consider is the following. Let A be a non-empty open subset of a Banach space X. Then a subset S of A is $1 - D$ almost everywhere in A, in the direction y, if for each $x \in A$

$$
\mu(\{t \in R : x + ty \in A \text{ and } x + ty \notin S\}) = 0
$$

(Here μ represents the Lebesgue measure on R.)

Note that, in the above definition, it is implicit that for each $x \in A$,

$$
\{t \in R : x + ty \in A \text{ and } x + ty \notin S\}
$$

is Lebesgue measurable. For us, the most important example of a $1 - D$ almost everywhere set is the following.
Proposition 1.1 ([7], Remark 2.4) Let f be a real-valued locally Lipschitz function defined on a non-empty open subset A of a Banach space X. Then for each $y \in S(X)$ (the unit sphere),

$$D_y \equiv \{ x \in A : f'(x; y) \text{ exists} \}$$

is $1 - D$ almost everywhere in A, in the direction y.

Not surprisingly, Haar-null sets are related to $1 - D$ almost everywhere subsets.

Proposition 1.2 ([3], Proposition 5.1) Let S be a universally measurable subset of a non-empty open subset A of a separable Banach space X. If for some $y \in S(X)$, S is $1 - D$ almost everywhere in A, in the direction y, then $A \setminus S$ is a Haar-null set.

In [3] the present authors said that a real-valued locally Lipschitz function f, defined on a non-empty open subset A, of a separable Banach space X, is essentially strictly differentiable on A, if $\{ x \in A : f$ is not strictly differentiable at $x \}$ is a Haar-null set, and they denoted by $\mathcal{S}_{e}(A)$, the family of all real-valued essentially strictly differentiable locally Lipschitz functions defined on A. We may also call such functions essentially smooth since strict differentiability is an appropriate localization of continuous differentiability.

On a few occasions we will need to consider vector-valued functions. Let A be a non-empty open subset of a Banach space X and let $f : A \to \mathbb{R}^n$ be defined by

$$f(x) \equiv (f_1(x), f_2(x), \ldots, f_n(x)) \quad \text{where } f_j : A \to \mathbb{R}.$$

Then we say that the vector-valued function f is essentially strictly differentiable on A if $f_j \in \mathcal{S}_{e}(A)$ for each $1 \leq j \leq n$, and in this case we write: $f \in \mathcal{S}_{e}(A; \mathbb{R}^n)$. In addition, we will say that f is strictly differentiable at $x \in A$, in the direction y if,

$$f^0_j(x; y) = -f^0_j(x; -y) \quad \text{for each } 1 \leq j \leq n$$

In this case we write: $f^0(x; y) = -f^0(x; -y)$.

Let us now return to the purpose of this paper, which as mentioned earlier, is to show that the family of functions $\mathcal{S}_{e}(A)$, possesses very striking closure properties. A first and optimistic guess might be, that if $f_1, f_2, \cdots, f_n \in \mathcal{S}_{e}(A)$ and $g \in \mathcal{S}_{e}(\mathbb{R}^n)$, then $g \circ f \in \mathcal{S}_{e}(A)$, where $f \equiv (f_1, f_2, \ldots, f_n)$. However, the following example shows that in general this is not true.
Example 1.1 Let A denote the open interval $(0,1)$ in R and let C denote a Cantor subset of A with $\mu(C) > 0$. Define the real-valued functions f_1, f_2 and d_C on A by: $f_1 \equiv 0$, $f_2(t) \equiv t$ and $d_C(t) \equiv \text{dist}(t, C)$. Further, define $g : R^2 \to R$ by $g(x, y) \equiv \text{dist}(x, y); \{0\} \times C)$. Clearly, f_1 and f_2 are strictly differentiable almost everywhere, in fact f_1 and f_2 are strictly differentiable everywhere. Moreover, by Theorem 8.5 in [3] we have that $g \in \mathcal{S}_c(R^2)$. We claim that $g \circ f \notin \mathcal{S}_c(A)$, where $f \equiv (f_1, f_2)$.

To see this, observe that $g \circ f(x) = d_C(x)$ for each $x \in A$. Now, it is standard that d_C is not strictly differentiable at any point $x \in C$. Hence, it follows that $g \circ f$ is not strictly differentiable at any point of C, and so $g \circ f \notin \mathcal{S}_c(A)$.

Remark 1.1 By exploiting a little more about Haar-null sets, [3], we could have shown the following.

1. On any non-empty open subset A, of any separable Banach space X, there exist $f_1, f_2 \in \mathcal{S}_c(A)$ such that $g \circ f \notin \mathcal{S}_c(A)$, where $f \equiv (f_1, f_2)$.

2. It is true however, that for any non-empty open subset A of any separable Banach space X, if $f \in \mathcal{S}_c(A)$ and $g \in \mathcal{S}_c(R)$ then $f \circ g \in \mathcal{S}_c(A)$, (see [3], Theorem 5.17).

2 A chain rule.

In this section of the paper, we show that there is a large subclass of the essentially strictly differentiable functions, that is closed under composition. This class of functions is closely related to Valadier’s saine functions, [9]. Let A be a non-empty open subset of R^n. We say that a real-valued locally Lipschitz function f defined on A is arc-wise essentially smooth on A if for each locally Lipschitz function $x \in \mathcal{S}_c((0,1); R^n)$,

$$\mu(\{t \in (0,1) : f^0(t; x^+(t)) \neq f^0(t; -x^+(t))\}) = 0$$

[Valadier requires this to hold for all absolutely continuous arcs.] We shall denote by $\mathcal{A}_c(A)$, the family of all arc-wise essentially smooth functions on A.

Remark 2.1 It is easily seen that the definition of $\mathcal{A}_c(A)$ is unaffected by replacing the open set $(0,1)$ by any (other) non-empty open subset of R.
Proposition 2.1 For each non-empty open subset A of \mathbb{R}^n, $\mathcal{A}_c(A) \subseteq \mathcal{S}_c(A)$.

Proof. Consider $f \in \mathcal{A}_c(A)$. For each fixed $y \in S(\mathbb{R}^n)$ we will show that the G_δ set $S_y \equiv \{ x \in A : f^0(x; y) = -f^0(x; -y) \}$ is $1 - D$ almost everywhere in A, in the direction y. To this end, consider $a \in A$. Let $U \equiv \{ t \in R : a + tx \in A \}$. Clearly U is non-empty and open. Now, consider the mapping $x : U \rightarrow A$ defined by $x(t) \equiv a + ty$. It is obvious that $x \in S_c(U; R^n)$. We may now perform a little set arithmetic.

\[
\{ t \in R : a + ty \in A \text{ and } a + ty \notin S_y \} \\
= \{ t \in U : f^0(a + ty; y) \neq -f^0(a + ty; -y) \} \\
= \{ t \in U : f^0(x(t); x'(t)) \neq -f^0(x(t); -x'(t)) \}
\]

and so,

\[
\mu(\{ t \in R : a + ty \in A \text{ and } a + ty \notin S_y \}) = 0
\]

which shows that S_y is $1 - D$ almost everywhere in A, in the direction y. Hence, by Proposition 1.2, $A \setminus S_y$ is a Haar-null (Lebesgue-null) set.

Next, let $\{ y_n : n \in N \}$ be a dense subset of $S(\mathbb{R}^n)$, and let $S \equiv \bigcap \{ S_{y_n} : n \in N \}$. It is easy to see that $A \setminus S$ is a Haar-null (Lebesgue-null) set. We shall complete the proof by showing that f is strictly differentiable at each point of S. So consider $x_0 \in S$. Since both of the mappings $y \rightarrow f^0(x_0; y)$ and $y \rightarrow -f^0(x_0; -y)$ are continuous on \mathbb{R}^n and $f^0(x_0; y_n) = -f^0(x_0; -y_n)$ for each $n \in N$, we have that $f^0(x_0; y) = -f^0(x_0; -y)$ for each $y \in S(\mathbb{R}^n)$. This shows that f is strictly differentiable at x_0.

Proposition 2.2 Let A be a non-empty open subset of \mathbb{R}. Then $\mathcal{A}_c(A) = \mathcal{S}_c(A)$.

Proof. We know from Proposition 2.1 that $\mathcal{A}_c(A) \subseteq \mathcal{S}_c(A)$. The proof that they are equal follows (as a special case) from Theorem 5.17 in [3].

Our next task is to show that the class of functions $\mathcal{A}_c(A)$ is reasonably large. Let us begin with the obvious observation that $\mathcal{A}_c(A)$ contains all the C^1 functions defined on A.

Lemma 2.1 Let A be a non-empty open subset of \mathbb{R}^n. Let f be a real-valued locally Lipschitz function defined on A. Then $f \in \mathcal{A}_c(A)$, if for each essentially strictly differentiable curve $x : (0, 1) \rightarrow A$,

\[
\mu(\{ t \in (0, 1) : f^0(x(t); x'(t)) = f'(x(t); x'(t)) \}) = 1
\]
A chain rule for Lipschitz functions

Proof. Let $x: (0, 1) \to A$ be essentially strictly differentiable on $(0, 1)$ that is, $x \in S_e((0, 1); R^n)$. We need to show that

$$\mu(\{ t \in (0, 1) : f^0(x(t); x'(t)) = -f^0(x(t); -x'(t)) \}) = 1$$

Consider the mapping $y: (0, 1) \to A$, defined by, $y(t) = x(1 - t)$. Note that almost everywhere $y'(t) = -x'(1 - t)$.

Let $E_1 \equiv \{ t \in (0, 1) : f^0(x(t); x'(t)) = f'(x(t); x'(t)) \}$ and $E_2 \equiv \{ t \in (0, 1) : -f^0(x(t); -x'(t)) = f'(x(t); x'(t)) \}$. Clearly, $f^0(x(t); x'(t)) = -f^0(x(t); -x'(t))$ on $E_1 \cap E_2$, so it remains to show that $\mu(E_2) = 1$.

Now, by the hypothesis, $E_3 \equiv \{ t \in (0, 1) : f'(y(t); y'(t)) = f^0(y(t); y'(t)) \}$ has measure one. On the other hand, $E_2 = h(E_3)$ where $h(t) \equiv 1 - t$. Therefore, $\mu(E_2) = 1$. ⋆

The next two lemmas are quite standard, but we include them for the sake of completeness.

Lemma 2.2 ([3], Lemma 5.13) Let f_1, f_2, \ldots, f_n be real-valued locally Lipschitz functions defined on a non-empty open subset A of a Banach space X. Let g be a real-valued locally Lipschitz function defined on an open subset B of R^n which contains $f(A)$; where $f \equiv (f_1, f_2, \ldots, f_n)$.

Suppose that f is differentiable in the direction y, at some point x_0, and that either, (i) $(g \circ f)'(x_0; y)$ exists or, (ii) $g'(f(x_0); f'(x_0; y))$ exists.

Then

$$(g \circ f)'(x_0; y) = g'(f(x_0); f'(x_0; y)).$$

Remark 2.2 From Lemma 2.2 we see that for each fixed $y \in X \setminus \{0\}$

$$\{ x \in A : (g \circ f)'(x; y) = g'(f(x); f'(x; y)) \}$$

is $1 - D$ almost everywhere in A, in the direction y.

Lemma 2.3 ([7], Lemma 2.3) Let f be a real-valued locally Lipschitz function defined on a non-empty open subset A of a Banach space X. Suppose that for some $y \in X \setminus \{0\}$, a subset S of A, is $1 - D$ almost everywhere in A, in the direction y. Then for each $x \in A$,

$$f^0(x; y) = \limsup_{z \to x} f^+(z; y).$$
If \(f^i(z; y) \) exists for each \(z \in S \), then

\[
-f^0(x; -y) = \liminf_{z \in S} f^+(z; y)
\]

Remark 2.3 In the case when \(f^0(x; y) = -f^0(x; -y) \)

\[
\lim_{z \in S} f^i(z; y) \text{ exists, and equals } f^i(x; y)
\]

The following lemma encapsulates the heart of our chain rule.

Lemma 2.4 Let \(A \) be a non-empty open subset of a Banach space \(X \). Let \(f = (f_1, f_2, \ldots, f_n) \) be a locally Lipschitz function from \(A \) into \(\mathbb{R}^n \). Furthermore, let \(g \) be a real-valued locally Lipschitz function defined on a non-empty open subset \(B \) of \(\mathbb{R}^n \) which contains \(f(A) \). Suppose \(f \) is strictly differentiable at some point \(x_0 \in A \), in the direction \(y \) and that either, (i) \(g \) is strictly differentiable at \(f(x_0) \), in the direction \(f'(x_0; y) \) or, (ii) \(f'(x_0; y) = 0 \). Then \(g \circ f \) is strictly differentiable at \(x_0 \), in the direction \(y \).

Proof. Let \(D = \{ x \in A : (g \circ f)'(x; y) = g'(f(x); f'(x; y)) \} \). It follows from Remark 2.2 that \(D \) is \(1 - D \) almost everywhere in \(A \), in the direction \(y \).

(i) Let us first observe that \(x_0 \in D \). From Lemma 2.3 we see that, to show \((g \circ f)^0(x_0; y) = -(g \circ f)^0(x_0; -y) \) we need only show that

\[
\lim_{z \in D} (g \circ f)^i(z; y) \text{ exists, and equals } (g \circ f)^i(x_0; y)
\]

So suppose \(\epsilon > 0 \). By the continuity of the mapping \(w \to g^+(w; f'(x_0; y)) \) at \(f(x_0) \) there exists an open neighbourhood \(U \) of \(x_0 \) such that

\[
|g^+(f(z); f'(x_0; y)) - g^+(f(x_0); f'(x_0; y))| < \epsilon/2
\]

for each \(z \in U \). Now, as \(g \) is locally Lipschitz there exists an open neighbourhood \(V \) of \(x_0 \) and a constant \(M > 0 \) such that

\[
|g'(f(z); f'(z; y)) - g'(f(z); f'(x_0; y))| \leq M\|f'(z; y) - f'(x_0; y)\|
\]

for each \(z \in D \cap V \). On the other hand, \(x \to f^+(x; y) \) is continuous at \(x_0 \), therefore there exists an open neighbourhood \(W \) of \(x_0 \) such that

\[
\|f'(x_0; y) - f^+(x_0; y)\| < \epsilon/2M
\]
A chain rule for Lipschitz functions

for each \(x \in W \). Hence we have that for each \(x \in D \cap W \cap V \cap U \)

\[
\left| (g \circ f)'(x_0; y) - (g \circ f)'(x; y) \right|
= \left| g'(f(x_0); f'(x_0; y)) - g'(f(x); f'(x; y)) \right|
\leq \left| g'(f(x_0); f'(x_0; y)) - g'(f(x); f'(x_0; y)) \right|
+ \left| g'(f(x); f'(x_0; y)) - g'(f(x); f'(x; y)) \right|
\leq \epsilon/2 + \epsilon/2 = \epsilon
\]

Therefore,

\[
\lim_{z \in D} (g \circ f)'(z; y) = (g \circ f)'(x_0; y)
\]

(ii) From Lemma 2.3, we have that

\[
(g \circ f)^0(x_0; y) = \limsup_{z \in D} (g \circ f)'(z; y)
\]

and

\[
-(g \circ f)^0(x_0; -y) = \liminf_{z \in D} (g \circ f)'(z; y)
\]

Now, \(g \) is locally Lipschitz, so there exists an open neighbourhood \(U \) of \(x_0 \) and a \(M > 0 \) such that

\[
\left| (g \circ f)'(z; y) \right| = \left| g'(f(z); f'(z; y)) \right| \leq M \left\| f'(z; y) \right\|
\]

for each \(z \in U \cap D \).

However, as \(f \) is strictly differentiable at \(x_0 \), in the direction \(y \), and \(f'(x_0; y) = 0 \) we have that

\[
\lim_{z \in D} (g \circ f)'(z; y) = 0
\]

and so by Lemma 2.3 we get that \((g \circ f)^0(x_0; y) = -(g \circ f)^0(x_0; -y) = 0 \).

We need a few more definitions before we can show that \(A(A) \) contains a significant class of functions, (above and beyond the \(C^1 \) functions). Let \(f \) be a real-valued locally Lipschitz function defined on a non-empty open subset \(A \) of a Banach space \(X \). Then \(f \) is upper semi-smooth (lower semi-smooth)

at a point \(x \in A \), in the direction \(y \) if,

\[
\begin{align*}
 f^+(x; y) &\geq \limsup_{t \to 0^+, y' \to -y} f^+(x + ty'; y) \\
 f^-(x; y) &\leq \liminf_{t \to 0^+, y' \to -y} f^-(x + ty'; y)
\end{align*}
\]
Moreover, we say that \(f \) is semi-smooth at a point \(x \in A \), in the direction \(y \) if,

\[
\limsup_{t \to 0^+} f^+(x + ty; y) = f^+(x; y) = \liminf_{t \to 0^+} f^-(x + ty; y)
\]

If \(X \) is finite dimensional then we say that \(f \) is arc-wise essentially upper semi-smooth (arc-wise essentially lower semi-smooth) on \(A \), if for each \(x \in \mathcal{S}_c((0, 1); A) \)

\[\mu(\{t \in (0, 1) : f \text{ is upper (lower) semi-smooth at } x(t) \text{ in the direction } x'(t)\}) = 1 \]

We recall that a real-valued function \(g : (a, b) \to \mathbb{R} \) is approximately continuous at a point \(x \in (a, b) \) if for each \(\epsilon > 0 \),

\[\lim_{\delta \to 0^+} \frac{\mu(\{t \in [x - \delta, x + \delta] : |g(t) - g(x)| > \epsilon\})}{2\delta} = 0 \]

The following is to be found in ([8], Theorem 35.3) and elsewhere.

Theorem 2.1 Let \(g \) be a real-valued Lebesgue measurable function defined on \((a, b)\), then \(g \) is approximately continuous almost everywhere in \((a, b)\).

The following technical result allows us to perform only “unilateral” analysis in our main theorem.

Theorem 2.2 Let \(f \) be a real-valued locally Lipschitz function defined on a non-empty open subset \(A \) of a finite dimensional Banach space \(X \). If \(f \) is arc-wise essentially upper semi-smooth (arc-wise essentially lower semi-smooth) on \(A \), then \(f \in \mathcal{A}_c(A) \).

Proof. Suppose that \(f \) is arc-wise essentially upper semi-smooth on \(A \) (the proof for the case when \(f \) is arc-wise essentially lower semi-smooth on \(A \) is obtained by considering \(-f \)). Let \(x : (0, 1) \to \mathbb{R}^n \) be strictly differentiable almost everywhere in \((0, 1)\). Consider the mapping \(T : (0, 1) \to \mathbb{R} \) defined by \(T(t) = f^+(x(t); x^+(t)) \). Of course, it follows from Remark 2.2 that almost everywhere \(T(t) = f'(x(t); x'(t)) \). Let \(P : (0, 1) \to \mathbb{R} \) be defined by \(P(t) = f^0(x(t); x^+(t)) \). Clearly, \(T(t) \leq P(t) \) for each \(t \in (0, 1) \). We claim that \(P \) is upper semi-continuous almost everywhere in \((0, 1)\) and so Lebesgue measurable on \((0, 1)\). Indeed, \(P \) is upper semi-continuous at each point \(t_0 \in (0, 1) \) where \(t \to x^+(t) \) is continuous. It now follows from Theorem
2.1 that P is approximately continuous almost everywhere in $(0, 1)$. Let $S \subseteq (0, 1)$ be the set of all points in $(0, 1)$ where P is approximately continuous, $t \rightarrow x^+(t)$ is continuous and f is upper semi-smooth at $x(t)$ in the direction $x'(t)$. From the hypothesis of the theorem it follows that $\mu(S) = 1$. We claim that $T(t) = P(t)$ at each point of S.

To prove this, consider an arbitrary point $t_0 \in S$. Let $\epsilon > 0$ be fixed, but arbitrary. We will show that $P(t_0) \leq T(t_0) + \epsilon$. Note that without loss of generality we may assume that $x^+(t_0) \neq 0$. Now, since f is upper semi-smooth at $x(t_0)$ in the direction $x'(t_0)$ there exists a $0 < \delta$ such that,

$$f^+(z; x'(t_0)) \leq T(t_0) + \epsilon/3$$

for each z in the non-empty open subset V, where V equals,

$$V \equiv \{ z \in A : z = x(t_0) + sw, \; 0 < s < \delta \text{ and } \|w - x'(t_0)\| < \delta \}$$

Let

$$E(\lambda) \equiv \frac{x(t_0 + \lambda) - x(t_0)}{\lambda} - x'(t_0) \text{ for } 0 < \lambda < (1 - t_0).$$

Since x is Gateaux differentiable at t_0 there exists a $\eta \in (0, \delta)$ such that $\|E(\lambda)\|_\infty < \delta$ for each $\lambda \in (0, \eta)$. Therefore, for each $\lambda \in (0, \eta),

$$x(t_0 + \lambda) = x(t_0) + \lambda(x'(t_0) + E(\lambda)) \in V$$

and so, $f^0(x(t_0 + \lambda); x'(t_0)) \leq T(t_0) + \epsilon/3$. Now, f is locally Lipschitz so there exists an open neighbourhood U of $x(t_0)$ and a constant $M > 0$ such that $|f(z) - f(y)| \leq M\|z - y\|$ for each $x, y \in U$. It follows from this, that for each $z \in U$ and each $x, y \in X$, $|f^0(z; x) - f^0(z; y)| \leq M\|x - y\|$. Hence, there exists an $r \in (0, \eta)$ such that

$$|P(t_0 + \lambda) - f^0(x(t_0 + \lambda); x'(t_0))| \leq M\|x^+(t_0 + \lambda) - x'(t_0)\| < \epsilon/3$$

for each $\lambda \in (0, r)$. From this we get that,

$$P(t_0 + \lambda) \leq T(t_0) + 2\epsilon/3$$

for each $\lambda \in (0, r)$. Also, since P is approximately continuous at t_0 there exists a $\lambda_0 \in (0, r)$ such that,

$$P(t_0 + \lambda_0) \geq P(t_0) - \epsilon/3$$
So at last we have that, $P(t_0) \leq T(t_0) + \epsilon$. However, since ϵ was arbitrary, we have that $P(t_0) = T(t_0)$. The result now follows from Lemma 2.1 and the fact that $T(t) = f'(x(t); x'(t))$ almost everywhere in $(0,1)$.

Now, we may show that the family of functions $\mathcal{A}_e(A)$ enjoys quite remarkable closure properties.

Theorem 2.3 Let A be a non-empty open subset of \mathbb{R}^m and suppose $f_1, f_2, \ldots, f_n \in \mathcal{A}_e(A)$. Let g be a real-valued function locally Lipschitz function defined on a non-empty open subset U of \mathbb{R}^n, which contains $f(A)$, where $f \equiv (f_1, f_2, \ldots, f_n)$. If $g \in \mathcal{A}_e(U)$, then $g \circ f \in \mathcal{A}_e(A)$.

Proof. Let $x : (0,1) \to A$ be essentially strictly differentiable on $(0,1)$ and define $f : A \to \mathbb{R}^n$, by $f \equiv (f_1, f_2, \ldots, f_n)$. Let us also define a curve $z : (0,1) \to U$, by $z(t) \equiv f(x(t))$. Our first task will be to show that $z \in \mathcal{S}_e((0,1); U)$. However, this follows almost immediately from Lemma 2.4 and the fact that $f \in \mathcal{A}_e(A)$.

Let $S_f \equiv \{ t \in (0,1) : f^0(x(t); x'(t)) = -f^0(x(t); -x'(t)) \}$ and $S_g \equiv \{ t \in (0,1) : g^0(z(t); z'(t)) = -g^0(z(t); -z'(t)) \}$. Now, define $S \equiv S_f \cap S_g$. Clearly, $\mu(S) = 1$. We claim that $(g \circ f)^0(x(t); x'(t)) = -(g \circ f)^0(x(t); -x'(t))$ at each point of S. To this end, consider any point $t_0 \in S$. Let us first observe that if $x'(t_0) = 0$, then we are done. So suppose that $x'(t_0) \neq 0$. Set $x_0 \equiv x(t_0)$ and $y \equiv x'(t_0)$. Note that since $y \neq 0$, we have that f is strictly differentiable at x_0, in the direction y. We consider two cases:

(i) Suppose that $f'(x_0; y) = x'(t_0) \neq 0$. Then g is strictly differentiable at $f(x_0) = z(t_0)$, in the direction $f'(x_0; y) = z'(t_0)$, since $t_0 \in S_g$. It now follows from Lemma 2.4 part(i) that $g \circ f$ is strictly differentiable at x_0, in the direction y; that is, $(g \circ f)^0(x(t_0); x'(t_0)) = -(g \circ f)^0(x(t_0); -x'(t_0))$.

(ii) Suppose that $f'(x_0; y) = x'(t_0) = 0$. Then by Lemma 2.4 part(ii) $g \circ f$ is strictly differentiable at x_0, in the direction y; that is, $(g \circ f)^0(x(t_0); x'(t_0)) = -(g \circ f)^0(x(t_0); -x'(t_0))$.

On relaxing the hypotheses on the f_1, f_2, \ldots, f_n we may still recover a satisfactory theorem:

Theorem 2.4 Let A be a non-empty open subset of a separable Banach space X, and suppose $f_1, f_2, \ldots, f_n \in \mathcal{S}_e(A)$. Suppose further, that U is a non-empty open subset of \mathbb{R}^n, which contains $f(A)$, where $f \equiv (f_1, f_2, \ldots, f_n)$. Then for each $g \in \mathcal{A}_e(U)$, $g \circ f \in \mathcal{A}_e(A)$.
A chain rule for Lipschitz functions

Proof. We will show first, that for each \(y \in X \), \(g \circ f \) is strictly differentiable, in the direction \(y \), almost everywhere in \(A \). Fix \(y \in X \). Let \(D \) be any Borel subset of \(A \) such that \(A \setminus D \) is a Haar-null set and \(f^0(x; z) = -f^0(x; -z) \) for each \(x \in D \) and \(z \in X \). Let \(P_y \equiv \{ x \in A : (g \circ f)^0(x; y) = -(g \circ f)^0(x; -y) \} \). Clearly, \(P_y \) is a Borel set, in fact \(P_y \) is a \(G_\delta \) set. Let \(H \) be a closed hyperplane in \(X \) such that \(y \not\in H \). Now consider the isomorphism \(T : H \times R \to X \) defined by \(T(h, t) = h + ty \). Let

\[
H_s = \{ h \in H : \mu(\{ t \in R : T(h, t) \in A \setminus D \}) = 0 \}
\]

By the remark just after Theorem 6 in [5], (see Remark 2.4 below) we see that \(H \setminus H_s \) is a Haar-null set. To show that \(A \setminus P_y \) is a Haar-null set in \(X \), it suffices (also because of the remark made after Theorem 6 in [5]) to show that for each \(h \in H_s \), \(\mu(\{ t \in R : T(h, t) \in A \setminus P_y \}) = 0 \).

To this end, consider \(h_0 \in H_s \). Let \(A_{h_0} \equiv \{ t \in R : T(h_0, t) \in A \} \). If \(A_{h_0} = \emptyset \), then we are done, so let us suppose that \(A_{h_0} \neq \emptyset \). Define \(x : A_{h_0} \to A \), by \(x(t) \equiv T(h_0, t) \) and \(z : A_{h_0} \to U \) by \(z(t) \equiv f(x(t)) \). Since \(h_0 \in H_s \), \(z \in S_c(A_{h_0}; U) \). Let

\[
S_f \equiv \{ t \in A_{h_0} : f^0(x(t); x'(t)) = -f^0(x(t); -x'(t)) \}
\]

and

\[
S_g \equiv \{ t \in A_{h_0} : g^0(z(t); z'(t)) = -g^0(z(t); -z'(t)) \}
\]

Now, define \(S \equiv S_f \cap S_g \). Clearly, \(\mu(A_{h_0} \setminus S) = 0 \). We claim that

\[
(g \circ f)^0(x(t); x'(t)) = -(g \circ f)^0(x(t); -x'(t))
\]

at each point \(t \in S \). To see this, consider an arbitrary point \(t_0 \in S \). Set \(x_0 \equiv x(t_0) \). Note that since \(x'(t_0) = y \neq 0 \), we have that \(f \) is strictly differentiable at \(x_0 \), in the direction \(y \).

We consider two cases.

(i) If \(f'(x_0; y) = z'(t_0) \neq 0 \), then \(g \) is strictly differentiable at \(f(x_0) = z(t_0) \), in the direction \(z'(t_0) = f'(x_0; y) \), since \(t_0 \in S_y \). It now follows from Lemma 2.4 part(i) that \(g \circ f \) is strictly differentiable at \(x_0 \), in the direction \(y \); that is, \((g \circ f)^0(x(t_0); y) = -(g \circ f)^0(x(t_0); -y) \).

(ii) Suppose that \(f'(x_0; y) = z'(t_0) = 0 \). Then by Lemma 2.4 part(ii), \(g \circ f \) is strictly differentiable at \(x_0 \), in the direction \(y \); that is, \((g \circ f)^0(x(t_0); y) = -(g \circ f)^0(x(t_0); -y) \).
Hence, \(\mu(\{t \in A_{h_{\theta}} : T(h_{0}, t) \in A \setminus P_{y}\}) = 0 \). Let \(\{y_{n} : n \in \mathbb{N}\} \) be a dense subset of \(S(X) \), and let \(P \equiv \bigcap_{n=1}^{\infty} P_{y_{n}} \). It follows from the continuity of the mappings \(z \rightarrow (g \circ f)^{0}(x; z) \) and \(z \rightarrow -(g \circ f)^{0}(x; -z) \) that \((g \circ f)^{0}(x; z) = -(g \circ f)^{0}(x; -z) \) for each \(z \in S(X) \) and each \(x \in P \). This completes the proof. \(\square \)

Corollary 2.1 Let \(A \) be a non-empty open subset of \(\mathbb{R}^{m} \) then \(\mathcal{A}_{c}(A) \) and \(\mathcal{S}_{c}(A) \) are function algebras and vector lattices containing the \(C^{1} \)-functions and the convex functions.

Remark 2.4 The remark in [5] just after Theorem 6 says:

If \(H \) is an arbitrary Abelian Polish group and \(T \) is a locally compact Abelian group (for example \((\mathbb{R}, +) \)) then for any universally measurable set \(A \subseteq H \times T \) the following are equivalent.

(i) The section \(A(h) \equiv \{ t \in T : (h, t) \in A \} \) is a Haar-null set, for the Haar measure on \(T \), for almost all \(h \in H \).

(ii) The set \(A \) is a Haar-null set in the product group \(H \times T \).

Recall that a topological space is said to be Polish, if it is homeomorphic to a separable, complete metric space. A complete proof of the previous remark - essentially due to Christensen - is given in an Appendix of [4]. We should also observe that from the proof of the previous theorem, it can be shown that for almost all \(x \) in \(A \),

\[
\nabla (g \circ f)(x) = \partial g(f(x)) \cdot \nabla f(x)
\]

Here \(\partial g \) is the Clarke subgradient of \(g \). Note, however, that \(g \) may fail to be strictly differentiable at \(f(x) \), unless the range of \(\nabla f(x) \) is all of \(\mathbb{R}^{n} \).

Finally, let us observe that the class of functions \(\mathcal{A}_{c}(\mathbb{R}^{n}) \) contains many distance functions. Indeed, one can show that if \(C \) is a regular subset of \(\mathbb{R}^{n} \), then the distance function generated by this set and any smooth norm on \(\mathbb{R}^{n} \), is in this class. To see this, we need to make the following observations:

(i) For any norm on \(\mathbb{R}^{n} \), the distance function \(d_{C} \) is regular at each point of \(C \), see [1].

(ii) If the norm is smooth on \(\mathbb{R}^{n} \), then \(-d_{C}\) is regular on \(\mathbb{R}^{n} \setminus C \), see [2].
A chain rule for Lipschitz functions

We can now define a class of closed subsets of \mathbb{R}^n as follows. A subset C of \mathbb{R}^n is arc-wise essentially smooth if for each $x \in \mathcal{S}_e((0,1); \mathbb{R}^n)$ the set

$$\{t \in (0,1) : x'(t) \in K_C(x(t)) \setminus T_C(x(t))\}$$

has measure zero. Here $K_C(x)$ denotes the contingent cone of C at x, and $T_C(x)$ denotes the Clarke tangent cone of C at x. Recall that C is regular at x if $K_C(x) = T_C(x)$, [6]. Note that all sets that are regular except on a countable set are arc-wise essentially smooth. Thus, all closed convex sets and all smooth manifolds are arc-wise essentially smooth.

Proposition 2.3 Let $\| \cdot \|$ be a smooth norm on \mathbb{R}^n and let C be a non-empty closed subset of \mathbb{R}^n. Then the distance function generated by the norm $\| \cdot \|$ and the set C is a member of $\mathcal{A}_e(\mathbb{R}^n)$ if, and only if, C is arc-wise essentially smooth.

It is immediate from this Proposition and Theorem 2.3 that, unlike the family of regular sets, the family of arc-wise essentially smooth sets is closed under finite unions. We should also observe that from Proposition 2.1 it follows that the boundary of every arc-wise essentially smooth set is a Lebesgue null set. We also note that the set of Example 1.1 is a null set but is not arc-wise essentially smooth. Finally, observe that we may now provide general conditions to ensure that exact penalty functions of the form

$$f(x) + Kd_C(x)$$

will be in $\mathcal{S}_e(A)$ or in $\mathcal{A}_e(A)$.

References

